Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conversion processes acid process

Preparation of Wort.—In harmony with greater efficiency in the distillation, patent still operators have introduced modifications in the method of saccharification of their cereal grains, usually by some application of the acid-conversion process. This process has as its object partial conversion of the starch of the grains into fermentable sugars by the use of acid rather than the diastase of malt and depends on the latter only for the final completion of the conversion. [Pg.110]

Product removal during reaction. Separation of the product before completion of the reaction can force a higher conversion, as discussed in Chap. 2. Figure 2.4 showed how this is done in sulfuric acid processes. Sometimes the product (or one of the products) can be removed continuously from the reactor as the reaction progresses, e.g., by allowing it to vaporize from a liquid phase reactor. [Pg.277]

Conversion of acetaldehyde is typically more than 90% and the selectivity to acetic acid is higher than 95%. Stainless steel must be used in constmcting the plant. This is an estabHshed process and most of the engineering is weU-understood. The problems that exist are related to more extensively automating control of the system, notably at start-up and shutdown, although even these matters have been largely solved. This route is the most rehable of acetic acid processes. [Pg.67]

Mobil MTG and MTO Process. Methanol from any source can be converted to gasoline range hydrocarbons using the Mobil MTG process. This process takes advantage of the shape selective activity of ZSM-5 zeoHte catalyst to limit the size of hydrocarbons in the product. The pore size and cavity dimensions favor the production of C-5—C-10 hydrocarbons. The first step in the conversion is the acid-catalyzed dehydration of methanol to form dimethyl ether. The ether subsequendy is converted to light olefins, then heavier olefins, paraffins, and aromatics. In practice the ether formation and hydrocarbon formation reactions may be performed in separate stages to faciHtate heat removal. [Pg.165]

Cyclohexane. The LPO of cyclohexane [110-82-7] suppUes much of the raw materials needed for nylon-6 and nylon-6,6 production. Cyclohexanol (A) and cyclohexanone (K) maybe produced selectively by using alow conversion process with multiple stages (228—232). The reasons for low conversion and multiple stages (an approach to plug-flow operation) are apparent from Eigure 2. Several catalysts have been reported. The selectivity to A as well as the overall process efficiency can be improved by using boric acid (2,232,233). K/A mixtures are usually oxidized by nitric acid in a second step to adipic acid (233) (see Cyclohexanol and cyclohexanone). [Pg.344]

Many methods for the conversion of acid copolymers to ionomers have been described by Du Pont (27,28). The chemistry involved is simple when cations such as sodium or potassium are involved, but conditions must be controlled to obtain uniform products. Solutions of sodium hydroxide or methoxide can be fed to the acid copolymer melt, using a high shear device such as a two-roU mill to achieve uniformity. AH volatile by-products are easily removed during the conversion, which is mn at about 150°C. A continuous process has been described, using two extmders, the first designed to plasticate the feed polymer and mix it rapidly with the metal compound, eg, zinc oxide, at 160°C (28). Acetic acid is pumped into the melt to function as an activator. Volatiles are removed in an extraction-extmder which follows the reactor-extmder, and the anhydrous melt emerges through a die-plate as strands which are cut into pellets. [Pg.408]

Naphthenic acid corrosion has been a problem ia petroleum-refining operations siace the early 1900s. Naphthenic acid corrosion data have been reported for various materials of constmction (16), and correlations have been found relating corrosion rates to temperature and total acid number (17). Refineries processing highly naphthenic cmdes must use steel alloys 316 stainless steel [11107-04-3] is the material of choice. Conversely, naphthenic acid derivatives find use as corrosion inhibitors ia oil-weU and petroleum refinery appHcations. [Pg.510]

Environmental aspects, as well as the requirement of efficient mixing in the mixed acid process, have led to the development of single-phase nitrations. These can be divided into Hquid- and vapor-phase nitrations. One Hquid-phase technique involves the use of > 98% by weight nitric acid, with temperatures of 20—60°C and atmospheric pressure (21). The molar ratios of nitric acid benzene are 2 1 to 4 1. After the reaction is complete, excess nitric acid is vacuum distilled and recycled. An analogous process is used to simultaneously produce a nitrobenzene and dinitrotoluene mixture (22). A conversion of 100% is obtained without the formation of nitrophenols or nitrocresols. The nitrobenzene and dinitrotoluene are separated by distillation. [Pg.65]

As worldwide attention has been focused on the dangers of acid rain, the demand to reduce sulfur dioxide [7446-09-5] emissions has risen. Several processes have been developed to remove and recover sulfur dioxide. Sulfur can be recovered from sulfur dioxide as Hquid sulfur dioxide, sulfuric acid, or elemental sulfur. As for the case of hydrogen sulfide, sulfur dioxide removal processes are categorized as adsorption, absorption, or conversion processes. [Pg.215]

Conversion Processes. A number of options exist for handling concentrated sulfur dioxide streams. One option is the sale of a Hquid sulfur dioxide product. Alternatively, the sulfur dioxide can be converted to elemental sulfur or to sulfuric acid. [Pg.217]

Commercial Hydrolysis Process. The process of converting poly(vinyl acetate) to poly(vinyl alcohol) on a commercial scale is compHcated on account of the significant physical changes that accompany the conversion. The viscosity of the poly(vinyl acetate) solution increases rapidly as the conversion proceeds, because the resulting poly(vinyl alcohol) is insoluble in the most common solvents used for the polymeri2ation of vinyl acetate. The outcome is the formation of a gel swollen with the resulting acetic acid ester and the alcohol used to effect the transesterification. [Pg.484]

Other synthetic methods have been investigated but have not become commercial. These include, for example, the hydration of ethylene in the presence of dilute acids (weak sulfuric acid process) the conversion of acetylene to acetaldehyde, followed by hydrogenation of the aldehyde to ethyl alcohol and the Fischer-Tropsch hydrocarbon synthesis. Synthetic fuels research has resulted in a whole new look at processes to make lower molecular weight alcohols from synthesis gas. [Pg.403]

Pyrolysis Of the many alternative chemical conversion processes that have been investigated, pyrolysis has received the most attention. Pyrolysis has been tested in countless pilot plants, and many full-scale demonstration systems have been operated. Few attained any longterm commercial use. Major issues were lack of market for the unstable and acidic pyrolytic oils and the char. [Pg.2244]

Direct conversion processes use chemical reactions to oxidize H2S and produce elemental sulfur. These processes are generally based either on the reaction of H2S and O2 or H2S and SO2. Both reactions yield water and elemental sulfur. These processes are licensed and involve specialized catalysts and/or solvents. A direct conversion process can be ii.scd directly on the produced gas stream. Where large flow rates are encoLui tered. ii is more common to contact the produced gas stream with a chemical or physical solvent and use a direct conversion proce.ss on the acid cas liberated in the regeneration step. [Pg.173]

Catalytic conversion processes include naphtha catalytic reforming, catalytic cracking, hydrocracking, hydrodealkylation, isomerization, alkylation, and polymerization. In these processes, one or more catalyst is used. A common factor among these processes is that most of the reactions are initiated hy an acid-type catalyst that promotes carhonium ion formation. [Pg.60]

Conversion of Acid Halides into Acids Hydrolysis Acid chlorides react with water to yield carboxylic acids. This hydrolysis reaction is a typical nucleophilic acyl substitution process and is initiated by attack of water on the acid chloride carbonyl group. The tetrahedral intermediate undergoes elimination of Cl and loss of H+ fo give the product carboxylic acid plus HC1. [Pg.802]

Conversion of Acid Halides into Esters Alcoholysis Acid chlorides react with alcohols to yield esters in a process analogous to their reaction with water to yield acids. In fact, this reaction is probably the most common method for preparing esters in the laboratory. As with hydrolysis, alcoholysis reactions are usually carried out in the presence of pyridine or NaOH to react with the HC1 formed. [Pg.802]

Irimescu and Kato have recently described an interesting example of enzymatic KR in ionic liquids instead of organic solvents (Scheme 7.4) [12]. The resolution with CALB is based on the fact that the reaction equilibrium was shifted toward the amide synthesis by the removal of water under reduced pressure. Nonsolvent systems have been also employed in this enantioselective amidation processes, reacting racemic amines with aliphatic acids. The best reaction conditions for the conversion of acids to amides was observed using CALB at 90 °C under vacuum. Meanwhile, no... [Pg.174]

When primary nitro compounds are treated with sulfuric acid without previous conversion to the conjugate bases, they give carboxylic acids. Hydroxamic acids are intermediates and can be isolated, so that this is also a method for preparing them. Both the Nef reaction and the hydroxamic acid process involve the aci form the difference in products arises from higher acidity, for example, a difference in sulfuric acid concentration from 2 to 15.5 M changes the product from the aldehyde to the hydroxamic acid. The mechanism of the hydroxamic acid reaction is not known with certainty, but if higher acidity is required, it may be that the protonated aci form of the nitro compound is further protonated. [Pg.1179]

Innumerable reactions occur in acid catalyzed hydrocarbon conversion processes. These reactions can be classified into a limited number of reaction families such as (de)-protonation, alkyl shift, P-scission,... Within such a reaction family, the rate coefficient is assumed to depend on the type, n or m cfr. Eq. (1), of the carbenium ions involved as reactant and/or product, secondary or tertiary. The only other structural feature of the reactive moiety which needs to be accounted for is the symmetry number. The ratio of the symmetry number of the... [Pg.53]

Figure 1 shows tire relationship betweai CHO conversion, CL selectivity and process time (time on str m) over TS-ls with different Si/11 ratio and SSZ-41, The result over ZSM-5 (Si/Al ratio=90) is also represented in Figure 1. The CHO conversion decreases with process time, whereas the CL selectivity is almost constant during the process time. The deactivation of SSZ-31 is largest among toe zeolites. The CL selectivity over SSZ-31 is lowest among the zeolites. The catalyst dractivation of TS-1(45) is larpr than fliat of TS-1(200). These results suggest that the acidity and micro pesre size of the zeolite siraultaiKously affected the catalyst deactivation. Figure 1 shows tire relationship betweai CHO conversion, CL selectivity and process time (time on str m) over TS-ls with different Si/11 ratio and SSZ-41, The result over ZSM-5 (Si/Al ratio=90) is also represented in Figure 1. The CHO conversion decreases with process time, whereas the CL selectivity is almost constant during the process time. The deactivation of SSZ-31 is largest among toe zeolites. The CL selectivity over SSZ-31 is lowest among the zeolites. The catalyst dractivation of TS-1(45) is larpr than fliat of TS-1(200). These results suggest that the acidity and micro pesre size of the zeolite siraultaiKously affected the catalyst deactivation.
Today, zinc and other metals can be extracted from sulfides by aqueous conversion processes that avoid the generation of SO2. Aqueous acid reacts with the sulfides to generate free sulfur or sulfate ions rather than SO2. ... [Pg.1466]


See other pages where Conversion processes acid process is mentioned: [Pg.707]    [Pg.125]    [Pg.166]    [Pg.216]    [Pg.239]    [Pg.5]    [Pg.35]    [Pg.328]    [Pg.514]    [Pg.438]    [Pg.222]    [Pg.481]    [Pg.214]    [Pg.295]    [Pg.295]    [Pg.335]    [Pg.406]    [Pg.419]    [Pg.126]    [Pg.99]    [Pg.225]    [Pg.32]    [Pg.268]    [Pg.119]    [Pg.572]    [Pg.574]    [Pg.769]    [Pg.636]   


SEARCH



Acid conversion process

Acid process

Conversion processes

© 2024 chempedia.info