Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Containers methyl chloride

Thousands of tonnes of methyl chloride are produced naturally every day, primarily in the oceans. Other significant natural sources include forest and brush fires and volcanoes. Although the atmospheric budget of methyl chloride can be accounted for by volatilization from the oceanic reservoir, its production and use in the manufacture of silicones and other chemicals and as a solvent and propellant can make a significant impact on the local atmospheric concentration of methyl chloride. It has been detected at low levels in drinking-water, groundwater, surface water, seawater, effluents, sediments, in the atmosphere, in fish samples and in human milk samples (Holbrook, 1993 United States National Library of Medicine, 1998). Tobacco smoke contains methyl chloride (lARC, 1986). [Pg.738]

Under no circumstances should water or other materials be introduced into tank cars which contain, or have contained, methyl chloride. Soapy water should be used to test for leaks, but glycerine should be used in freezing weather or around very cold pipes or equipment. An open flame must never be used to test for leaks on any containers holding methyl chloride. [Pg.115]

The distillate weighs about 110 g. and contains methyl formate and methylal. If it is placed in a flask provided with a reflux condenser and a solution of 25 g. of sodium hydroxide in 40 ml. of water is added, the methyl formate is liydrolysed to sodium formate and the methylal separates on the surface. The latter may be removed, dried with anhydrous calcium chloride and distilled about 30 g. of methylal, b.p. 37-42°, are obtained. If the aqueous layer is evaporated to diyness, about 25 g. of sodium formate are isolated. [Pg.416]

Naturally occurring isotopes of any element are present in unequal amounts. For example, chlorine exists in two isotopic forms, one with 17 protons and 18 neutrons ( Cl) and the other with 17 protons and 20 neutrons ( Cl). The isotopes are not radioactive, and they occur, respectively, in a ratio of nearly 3 1. In a mass spectrum, any compound containing one chlorine atom will have two different molecular masses (m/z values). For example, methyl chloride (CH3CI) has masses of 15 (for the CH3) plus 35 (total = 50) for one isotope of chlorine and 15 plus 37 (total = 52) for the other isotope. Since the isotopes occur in the ratio of 3 1, molecular ions of methyl chloride will show two molecular-mass peaks at m/z values of 50 and 52, with the heights of the peaks in the ratio of 3 1 (Figure 46.4). [Pg.339]

A diagrammatic illustration of the effect of an isotope pattern on a mass spectrum. The two naturally occurring isotopes of chlorine combine with a methyl group to give methyl chloride. Statistically, because their abundance ratio is 3 1, three Cl isotope atoms combine for each Cl atom. Thus, the ratio of the molecular ion peaks at m/z 50, 52 found for methyl chloride in its mass spectrum will also be in the ratio of 3 1. If nothing had been known about the structure of this compound, the appearance in its mass spectrum of two peaks at m/z 50, 52 (two mass units apart) in a ratio of 3 1 would immediately identify the compound as containing chlorine. [Pg.340]

Oligomeric Vinylphosphonate. A water-soluble oligomer, Fyrol 76 [41222-33-7] is produced by reaction of bis(2-chloroethyl) vinylphosphonate and dimethyl methylphosphonate with elimination of all the chlorine as methyl chloride (127,128). This Hquid, containing 22.5% P, is curable by free-radical initiation, on cotton or other fabrics. Nitrogen components, such as A/-methylolacrylamide or methylolmelamines, are usually included in the finish, which can be durable to multiple launderings (129,130). [Pg.480]

Ethylene oxide adds to the bis(2-hydtoxyethyl) teitiaiy amine in a random fashion where x y y = n y2. Ethoxylated amines, varying from strongly cationic to very weakly cationic in character, are available containing up to 50 mol of ethylene oxide/mol of amine. Ethyoxylated fatty amine quaternaries, cationic surfactants (both chloride from methyl chloride and acetate from acetic acid), ate also available. [Pg.219]

Tertiary Amine-Containing Copolymers. Copolymers based on DMAEMA (dimethylarninoethyl methacrylate) in either free amine form or quatemized with diethyl sulfate or methyl chloride have achieved commercial significance as fixatives in hair-styling formulations, especially in the weU-pubhcized "mousses" or as hair-conditioning shampoo additives. This success has occurred because the cationic charge affords substantive resins that strongly adhere to the hair (141). [Pg.533]

A representative technical grade of methyl chloride contains not more than the following indicated quantities in ppm of impurities water, 100 acid, such as HCl, 10 methyl ether, 20 methanol, 50 acetone, 50 residue, 100. No free chlorine should be detectable. Traces of higher chlorides are generally present in methyl chloride produced by chlorination of methane. The boiling point should be between —24 and —23° C, and 5—95% should distill within a range of about 0.2°C. It should be clear, colorless, and free from visible impurities. [Pg.516]

Chloroform can be manufactured from a number of starting materials. Methane, methyl chloride, or methylene chloride can be further chlorinated to chloroform, or carbon tetrachloride can be reduced, ie, hydrodechlorinated, to chloroform. Methane can be oxychlorinated with HCl and oxygen to form a mixture of chlorinated methanes. Many compounds containing either the acetyl (CH CO) or CH2CH(OH) group yield chloroform on reaction with chlorine and alkali or hypochlorite. Methyl chloride chlorination is now the most common commercial method of producing chloroform. Many years ago chloroform was almost exclusively produced from acetone or ethyl alcohol by reaction with chlorine and alkali. [Pg.525]

Ethyl chloride is handled and transported in pressure containers under conditions similar to those appHed to methyl chloride. In the presence of moisture, ethyl chloride can be moderately corrosive. Carbon steel is used predominantly for storage vessels and prolonged contact with copper should be avoided. [Pg.3]

The reaction of lithium with methyl chloride in ether solution produces a solution of methyllithium from which most of the relatively insoluble lithium chloride precipitates. Ethereal solutions of halide-free" methyllithium, containing 2-5 mole percent of lithium chloride, were formerly marketed by Foote Mineral Company and by Lithium Corporation of America, Inc., but this product has been discontinued by both companies. Comparable solutions are also marketed by Alfa Products and by Aldrich Chemical Company these solutions have a limited shelf-life and older solutions have often deteriorated... [Pg.107]

Elimination of a molecule of methyl chloride takes place also in several other cy-clizations of organyl methyl tellurides containing active chlorine atoms, e.g., in the synthesis of tellurocoumarin (84JHC1281) and telluroisocoumarin (80JOC3535). [Pg.8]

To 5 grams of N,N -bis[1-methyi-3-(2,2,6-trimethylcyclohexyl)propyl]-N,N -dimethyl-1,6-hexanediamine dissolved in 100 ml of methanol, at 4°C, were added 100 ml methanol containing 10 grams of methyl chloride. The solution was heated in a closed vessel at 60°C for 15 hours. The colorless solution was concentrated and the resulting white solid crystallized from ethanol-acetonitrile-ether to obtain N,N -bis[1-methyl-3-(2,2,6-trimethylcyclo-hexyOpropyl] -N,N -dimethyl-1,6-hexanediamine bis(methochloride) hemihydrate. [Pg.1534]

To arrive at some idea of the precision attainable in direct absorptiometry with gases, methyl chloride contained in a metal cell with beryllium windows was systematically expanded by connecting the cell to a vacuum chamber, output currents being read after each expansion. The results were satisfactory.14... [Pg.84]


See other pages where Containers methyl chloride is mentioned: [Pg.438]    [Pg.515]    [Pg.111]    [Pg.8]    [Pg.438]    [Pg.8]    [Pg.243]    [Pg.10]    [Pg.9014]    [Pg.214]    [Pg.438]    [Pg.515]    [Pg.111]    [Pg.8]    [Pg.438]    [Pg.8]    [Pg.243]    [Pg.10]    [Pg.9014]    [Pg.214]    [Pg.692]    [Pg.432]    [Pg.246]    [Pg.393]    [Pg.29]    [Pg.513]    [Pg.514]    [Pg.515]    [Pg.516]    [Pg.519]    [Pg.482]    [Pg.483]    [Pg.483]    [Pg.90]    [Pg.102]    [Pg.107]    [Pg.54]    [Pg.271]    [Pg.290]    [Pg.3]    [Pg.398]    [Pg.8]    [Pg.748]    [Pg.109]    [Pg.109]   
See also in sourсe #XX -- [ Pg.520 ]




SEARCH



Methyl chlorid

Methyl chloride

© 2024 chempedia.info