Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conics

The simplest type of centrifugal device is the cyclone separator (Fig. 3.4), which consists of a vertical cylinder with a conical bottom. The centrifugal force is generated by the fluid motion. The mixture enters in a tangential inlet near the top, and the rotating motion so created develops centrifugal force which throws the particles radially toward the wall. [Pg.71]

White crystals m.p. 162-164 C. ll can be prepared by the fermentation of sugar with the mould Aspergillus lerreus or by healing citra-conic anhydride with water at ISO C. Electrolysis of the potassium salt in solution gives allene. Itaconic acid is used as a comonomer in plastics its esters are polymerized to lubricating oils and plasticizers. [Pg.228]

CsHsO. Colourless, crystalline solid m.p. 115 C. Prepared by the dry distillation of tartaric acid or by reduction of itaconic or cilra-conic acids. Forms an anhydride when heated to 200"C. [Pg.336]

Another method of obtaining 3D tomographic model of object consists in use of systems with 3D configuration of penetrating emission. In NDT tomographs with conic beams are the... [Pg.216]

In Dynamic Spatial Reconstructor at the expense of use 2D matrix of detectors there was the opportunity to use a divergent cone beam of source emission. This system had a number of lacks. In particular the number of projections is rigidly limited by the number of x-ray sources. The dispersion of source emission results in errors of data collected.. However the system confirmed basic advantages of application of conic beams and 2D matrices of detectors for collecting information about 3D object. [Pg.217]

The sensitivity to defects and other control parameters can be improved by optimizing the choice of the probe. It appears, after study of different types of probes (ferritic, wild steel, insulator) with different geometries (dish, conical,. ..), necessary to underline that the success of a feasibility research, largely depends on a suitable definition of measure collectors, so that they are adapted to the considered problem. [Pg.289]

It is a probe whose the coil support is a small circular sticks with a straiglit section. The aim of our study is to assimilate the resulting magnetic field to a material point, hi order to minimize the lateral field, we have chosen the construction of conical coil where the lateral field at a contact point in respect to a straight configuration is decreased with an exponential factor. The results obtained from the curves are as follow ... [Pg.292]

Figure 4 Ferritic probe with a conic section. Figure 4 Ferritic probe with a conic section.
Figure 5 Resistance variation in function of the frequency (conic probe). Figure 5 Resistance variation in function of the frequency (conic probe).
Figure 7 Normalized impedance diagram (ferritic conic probe). Figure 7 Normalized impedance diagram (ferritic conic probe).
The results obtained by the probe whose nucleus and coil are conic allows to conclude that ... [Pg.295]

This approach is more close to X-ray stereo imaging and caimot reach enough depth resolution. There are also several systems with linear movement (1-dimensional) through the conical beam [5] as shown in Fig.4. In this case usable depth and spatial resolution can be achieved for specifically oriented parts of the object only. [Pg.569]

Another phenomenon is so called two-side filling of one-side closed conical capillaries with liquid [5]. On the one hand the more penetrant is trapped by the defect the wider indication will appear. Contrariwise it is almost impossible to extract a penetrant from the completely filled surface defects by dry developer [6]. In this study we propose the theory of the phenomenon. Besides experimental results of the investigation of two-side filling with various penetrants of conical capillaries are presented. Practical recommendations to optimize liquid penetrant testing process are proposed. [Pg.613]

Let us consider one more physical phenomenon, which can influence upon PT sensitivity and efficiency. There is a process of liquid s penetration inside a capillary, physical nature of that is not obvious up to present time. Let us consider one-side-closed conical capillary immersed in a liquid. If a liquid wets capillary wall, it flows towards cannel s top due to capillary pressure pc. This process is very fast and capillary imbibition stage is going on until the liquid fills the channel up to the depth l , which corresponds the equality pcm = (Pc + Pa), where pa - atmospheric pressure and pcm - the pressure of compressed air blocked in the channel. [Pg.615]

But for some liquids exists the third stage of liquid s penetration inside conical capillary, which was established in [5]. During this stage a channel is filling both from its entrance and from its closed top. Two liquid columns arise and are growing towards each other till the complete channel s filling (fig. 2). The most intriguing pattern can be observed when we exclude direct liquid s access to channel s entrance. It corresponds to the cases... [Pg.615]

Thus it is necessary to find alternative approach to describe the physical mechanism of two-side filling of conical capillaries with hquids. Theoretical model of film flow in conical dead-end capillary is based on the concept of disjoining pressure II in thin liquid film [13]... [Pg.616]

Use now this equation to describe liquid film flow in conical capillary. Let us pass to spherical coordinate system with the origin coinciding with conical channel s top (fig. 3). It means that instead of longitudinal coordinate z we shall use radial one r. Using (6) we can derive the total flow rate Q, multiplying specific flow rate by the length of cross section ... [Pg.617]

Fig. 4 illustrates the time-dependence of the length of top s water column in conical capillary of the dimensions R = 15 pm and lo =310 pm at temperature T = 22°C. Experimental data for the top s column are approximated by the formula (11). The value of A is selected under the requirement to ensure optimum correlation between experimental and theoretical data. It gives Ae =3,810 J. One can see that there is satisfactory correlation between experimental and theoretical dependencies. Moreover, the value Ae has the same order of magnitude as Hamaker constant Ah. But just Ah describes one of the main components of disjoining pressure IT [13]. It confirms the rightness of our physical arguments, described above, to explain the mechanism of two-side liquid penetration into dead-end capillaries. [Pg.617]

One more experimental result, which is important for PT is as follows. Only polar liquids fill conical capillaries from both sides. We used various penetrants to fill conical defects Pion , LZh-6A , LZhT , LUM-9 etc. It was established that only the penetrants containing polar liquid as the basic liquid component (various alcohols, water and others) manifest two-side filling phenomenon. This result gives one more confirmation of the physical mechanism of the phenomenon, based on liquid film flow, because the disjoining pressure strongly depends just on the polarity of a liquid. [Pg.618]

Fig. 2 Two-side filling of conical capillary (Ro = 45 pm, lo = 900 pm) with ethanol... Fig. 2 Two-side filling of conical capillary (Ro = 45 pm, lo = 900 pm) with ethanol...
Fig. 3. Principal sketch of two-side filling of conical capillary with a hquid... Fig. 3. Principal sketch of two-side filling of conical capillary with a hquid...
Fig. 4. Time-dependence of top s column of water in conical capillary. Fig. 4. Time-dependence of top s column of water in conical capillary.
Microscopic analyses of the van der Waals interaction have been made for many geometries, including, a spherical colloid in a cylindrical pore [14] and in a spherical cavity [15] and for flat plates with conical or spherical asperities [16,17]. [Pg.234]

Lin et al. [70, 71] have modeled the effect of surface roughness on the dependence of contact angles on drop size. Using two geometric models, concentric rings of cones and concentric conical crevices, they find that the effects of roughness may obscure the influence of line tension on the drop size variation of contact angle. Conversely, the presence of line tension may account for some of the drop size dependence of measured hysteresis. [Pg.359]

Figure B3.4.16. A generic example of crossing 2D potential surfaces. Note that, upon rotating around the conic intersection point, the phase of the wavefunction need not return to its original value. Figure B3.4.16. A generic example of crossing 2D potential surfaces. Note that, upon rotating around the conic intersection point, the phase of the wavefunction need not return to its original value.
Sadygov R G and Yarkony D R 1998 On the adiabatic to diabatic states transformation in the presence of a conical intersection a most diabatic basis from the solution to a Poisson s equation. I J. Chem. Rhys. 109 20... [Pg.2323]

Mead C A and Truhlar D G 1979 On the determination of Born-Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei J. Chem. Phys. 70 2284... [Pg.2330]

Baer R, Charutz D M, Kosloff R and Baer M 1996 A study of conical intersection effects on scattering processes—the validity of adiabatic single-surface approximations within a quasi-Jahn-Teller model J. Chem. Phys. 105 9141... [Pg.2330]

Figure C2.2.9. Polygonal domains of focal conics in a smectic A phase confined between parallel plates. Figure C2.2.9. Polygonal domains of focal conics in a smectic A phase confined between parallel plates.
The stoi7 begins with studies of the molecular Jahn-Teller effect in the late 1950s [1-3]. The Jahn-Teller theorems themselves [4,5] are 20 years older and static Jahn-Teller distortions of elecbonically degenerate species were well known and understood. Geomebic phase is, however, a dynamic phenomenon, associated with nuclear motions in the vicinity of a so-called conical intersection between potential energy surfaces. [Pg.2]

Molecular aspects of geometric phase are associated with conical intersections between electronic energy surfaces, W(Q), where Q denotes the set of say k vibrational coordinates. In the simplest two-state case, the W Q) are eigen-surfaces of the nuclear coordinate dependent Hermitian electronic Hamiltonian... [Pg.4]


See other pages where Conics is mentioned: [Pg.211]    [Pg.240]    [Pg.616]    [Pg.618]    [Pg.655]    [Pg.819]    [Pg.297]    [Pg.1646]    [Pg.1647]    [Pg.1941]    [Pg.2317]    [Pg.2]    [Pg.2]    [Pg.4]    [Pg.4]    [Pg.5]    [Pg.5]   
See also in sourсe #XX -- [ Pg.7 , Pg.9 , Pg.10 , Pg.25 ]

See also in sourсe #XX -- [ Pg.71 , Pg.307 ]




SEARCH



Conicity

© 2024 chempedia.info