Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conic concentrator

The conic concentrator is actually a truncated cone with reflective sides. It is not an ideal concentrator, and its transmission reaches about 0.8. Its 2D version (with a triangular profile) is called a V-trough, Fig. 2.10. [Pg.59]


Fig. 3.6 Conical concentration zone of a thin-layer plate according to Stahl (1967). Fig. 3.6 Conical concentration zone of a thin-layer plate according to Stahl (1967).
Complexity is limited to thin-walled, conical, concentric shapes. Typically, the diameter is twice the depth. [Pg.122]

Lin et al. [70, 71] have modeled the effect of surface roughness on the dependence of contact angles on drop size. Using two geometric models, concentric rings of cones and concentric conical crevices, they find that the effects of roughness may obscure the influence of line tension on the drop size variation of contact angle. Conversely, the presence of line tension may account for some of the drop size dependence of measured hysteresis. [Pg.359]

In this section, we concentrate on a few examples to show the degree of relevance of the theory presented in the previous sections. For this purpose, we analyze the conical intersections of two real two-state systems and one real system resembling a tri-state case. [Pg.699]

The numerical part is based on two circles, C3 and C4, related to two different centers (see Fig. 13). Circle C3, with a radius of 0.4 A, has its center at the position of the (2,3) conical intersection (like before). Circle C4, with a radius 0.25 A, has its center (also) on the C v line, but at a distance of 0.2 A from the (2,3) conical intersection and closer to the two (3,4) conical intersections. The computational effort concentrates on calculating the exponential in Eq, (38) for the given set of ab initio 3 x 3 x matrices computed along the above mentioned two circles. Thus, following Eq, (28) we are interested in calculating the following expression ... [Pg.708]

Oxamide differs from most aliphatic acid amides in being almost insoluble in water, and therefore can be readily prepared from the diethyl ester by Method 2(a). Place a mixture of 5 ml. of concentrated [d o-88o) ammonia solution and 5 ml. of water in a 25 ml. conical flask, for which a welTfitting cork is available. (The large excess of... [Pg.118]

Succinamide. NHoCOCH2 CH2CONH2. (Method 2(a)). Add 5 ml. (5 8 g.) of dimethyl succinate to a mixture of 50 ml. of water and 25 ml. of concentrated [dy o-88o) aqueous ammonia solution in a 150 ml. conical flask. Cork the flask and shake the contents the dimethyl succinate rapidly dissolves to give a clear solution. Allow the solution to stand after about i hour the succinamide starts to crystallise, and then continues to separate for some time. Next day, filter off the succinamide at the pump, wash with cold water, and drain. Recrystallise from water, from which the succinamide separates as colourless crystals the latter soften at 240° and melt at 254 -255° with... [Pg.119]

Place I g. of benzamide and 15 ml. of 10% aqueous sodium hydroxide solution in a 100 ml. conical flask fitted with a reflux water-condenser, and boil the mixture gently for 30 minutes, during which period ammonia is freely evolved. Now cool the solution in ice-water, and add concentrated hydrochloric acid until the mixture is strongly acid. Benzoic acid immediately separates. Allow the mixture to stand in the ice-water for a few minutes, and then filter off the benzoic add at the pump, wash with cold water, and drain. Recrystallise from hot water. The benzoic acid is obtained as colourless crystals, m.p. 121°, almost insoluble in cold water yield, o 8 g. (almost theoretical). Confirm the identity of the benzoic acid by the tests given on p. 347. [Pg.120]

Add 15 g, of chloroacetic acid to 300 ml. of aqueous ammonia solution d, o-88o) contained in a 750 ml. conical flask. (The manipulation of the concentrated ammonia should preferably be carried out in a fume-cupboard, and great care taken to avoid ammonia fumes.) Cork the flask loosely and set aside overnight at room temperature. Now concentrate the solution to about 30 ml. by distillation under reduced pressure. For this purpose, place the solution in a suitable distilling-flask with some fragments of unglazed porcelain, fit a capillary tube to the neck of the flask, and connect the flask through a water-condenser and receiver to a water-pump then heat the flask carefully on a water-bath. Make the concentrated solution up to 40 ml. by the addition of water, filter, and then add 250 ml. of methanol. Cool the solution in ice-water, stir well, and set aside for ca. I hour, when the precipitation of the glycine will be complete. [Pg.130]

Prepare a mixture of 25 ml. of concentrated nitric acid and 80 ml. of water in a 750 ml. flat-bottomed flask for which a steam-distillation fitting is available for subsequent use. Warm a mixture of 20 g. of phenol and 15 ml. of water gently in a small conical flask until the phenol is molten on shaking the... [Pg.170]

Place 30 ml. of pure toluene and 6ml. of concentrated sulphuric acid in a 100 ml. conical flask fitted with a reflux water-condenser. Boil the mixture gently over a gauze for 5 minutes, with frequent and thorough shaking to mix the two layers. Now... [Pg.178]

Dissolve 15 ml. (15-4 g.) of aniline in a mixture of 40 ml. of concentrated hydrochloric acid and 40 ml. of water contained in a 250 ml. conical flask. Place a thermometer in the solution, immerse the flask in a mixture of ice and water, and cool until the temperature of the stirred solution reaches 5°. Dissolve I2 5 g. of powdered sodium nitrite in 30 ml. of water, and add this solution in small quantities (about 2-3 ml. at a time) to the cold aniline hydrochloride solution, meanwhile keeping the latter well stirred by means of a thermometer. Heat is evolved by the reaction, and therefore a short interval should be allowed between consecutive additions of the sodium nitrite, partly to allow the temperature to fall again to 5°, and partly to ensure that the nitrous acid formed reacts as completely as possible with the aniline. The temperature must not be allowed to rise above 10°, otherwise appreciable decomposition of the diazonium compound to phenol will occur on the other hand, the temperature... [Pg.184]

Dissolve 2 g. of anthranilic acid in 12 8 ml. of 5% aqueous sodium hydroxide, or in 16 ml. of A -NaOH solution in a 50 ml. conical flask. (It is essential that the concentration of the hydroxide solution is accurately known.) Add i-6 ml. of dimethyl sulphate, and shake the securely-stoppered flask vigorously. [Pg.222]

Place 5 ml. of benzaldehyde in a wide-necked stout-walled bottle of about 100 ml. capacity (a conical flask is too fragile for this purpose) and add 50 ml. of concentrated dy 0 880) ammonia solution. Cork the bottle securely, shake vigorously, and then allow to stand for 24 hours, by which time the layer of benzaldehyde at the bottom of the bottle will have been converted into a hard mass of hydrobenzamide. (If after 24 hours the crude hydrobenzamide is still syrupy, shake the mixture vigorously and allow to stand for another hour, when the conversion will be complete.) Break up the solid pellet with a strong spatula, filter at the pump, wash with water and drain thoroughly. Recrystallise from ethanol methylated spirit should not be used, as it contains sufficient water to cause partial hydrolysis back to benzaldehyde and ammonia. Hydrobenzamide is obtained as colourless crystals, m.p. 101° (and not 110° as frequently quoted) yield, 4 g. [Pg.230]

Add a known volume ofo oaM.AgNOj solution (in excess) and boil the solution until the silver chloride has coagulated. Filter through a conical 5 cm. funnel, ensuring that the filter-paper does not protrude above the r m of the funnel. Wash the silver chloride and the filter-paper several times with a fine jet of distilled water. To the united filtrate and washings add i ml. of saturated ferric alum solution. The solution should be almost colourless if it is more than faintly coloured, add a few drops of concentrated nitric acid. Then titrate with 0 02M-ammonium thiocyanate solution until the permanent colour of ferric thiocyanate is just perceptible. (Alternatively the chloride may be determined potentiometrically.)... [Pg.507]

Dissolve 30 g. of potassium bromide in 50 ml. of water in a 350 ml. conical flask gerUle warming may be necessary. Cool the flask with running water from the tap so that the contents attain room temperature. Add 25 ml. of concentrated sulphuric acid slowly and with constant rotation of the flask to ensure thorough mixing cool under the tap from... [Pg.280]

Succinamide. Add 5 g. (4-8 ml.) of dimethyl succinate to 25 ml. of concentrated ammonia solution (sp. gr. 0-88) in a 100 ml. conical flask. Cork the flask and shake the contents for a few minutes aUow to stand for 24 hours with occasional shaking. Filter off the crystals of succinamide, and wash with a Uttle cold water. RecrystaUise from a little hot water. Dry in the steam oven and determine the m.p. The yield is 3-5 g. Pure succinamide melts at 254° with decomposition. [Pg.403]

Gyanoacetamide. Place 150 ml. of concentrated aqueous ammonia solution (sp. gr. 0-88) in a 500 ml. wide-mouthed conical flask and add 200 g. (188 ml.) of ethyl cyanoacetate. Shake the cloudy mixture some heat is evolved and it becomes clear in about 3 minutes. Stand the loosely stoppered flask in an ice-salt mixture for 1 hour, filter rapidly with suction, and ash the solid with two 25 ml. portions of ice-cold ethanol. Dry in the air the yield of pale yellow cyanoacetamide is 110 g. (1). Recrystallise from 190 ml. of 95 per cent, ethanol a colourless product, m.p. 119-120 , is deposited with practically no loss. [Pg.434]

Place a mixture of 25 g. of a-naphthylamine (Section IV,37) and 125 g. (69 -5 ml.) of concentrated sulphuric acid in a 250 ml. conical or round-bottomed flask, and heat in an oil bath for 4-5 hours or until a test sample, when made alkaline with sodium hydroxide solution and extracted with ether, yields no naphthylamine upon evaporation of the ether. Pour the warm reaction mixture cautiously and with stirring into 300 ml. of cold... [Pg.586]


See other pages where Conic concentrator is mentioned: [Pg.321]    [Pg.321]    [Pg.176]    [Pg.160]    [Pg.355]    [Pg.59]    [Pg.321]    [Pg.321]    [Pg.176]    [Pg.160]    [Pg.355]    [Pg.59]    [Pg.597]    [Pg.680]    [Pg.75]    [Pg.97]    [Pg.129]    [Pg.180]    [Pg.182]    [Pg.211]    [Pg.216]    [Pg.232]    [Pg.273]    [Pg.304]    [Pg.501]    [Pg.239]    [Pg.311]    [Pg.337]    [Pg.363]    [Pg.411]    [Pg.525]    [Pg.584]    [Pg.586]    [Pg.598]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Conicity

© 2024 chempedia.info