Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conductive liquids data table

The room temperature conductivity data for a wide variety of ionic liquids are listed in Tables 3.6-3, 3.6-4, and 3.6-5. These tables are organized by the general type of ionic liquid. Table 3.6-3 contains data for imidazolium-based non-haloaluminate alkylimidazolium ionic liquids. Table 3.6-4 data for the haloaluminate ionic liquids, and Table 3.6-5 data for other types of ionic liquids. There are multiple listings for several of the ionic liquids in Tables 3.6-3-3.6-5. These represent measurements by different researchers and have been included to help emphasize the significant vari-... [Pg.111]

Interpreting Data Nonmetals can be solids, liquids, or gases. They do not conduct electricity and do not react with acids. If a nonmetal is a solid, it is likely to be brittle and have color (other than white or silver). Write the word nonmetal beneath the Classification heading in the data table for those element samples that display the general characteristics of nonmetals. [Pg.23]

Figure 3.6-3 Plot of conductivity versus viscosity for the ionic liquids in Tables 3.6-3-3.6-5. The line represents the best fit of the data to a power function. Figure 3.6-3 Plot of conductivity versus viscosity for the ionic liquids in Tables 3.6-3-3.6-5. The line represents the best fit of the data to a power function.
In Liquid State Electronics of Insulating Liquids, one of the world s leading experts in dielectric liquids discusses the theoretical basis and the experiments on electronic conduction in nonpolar liquids. This book provides a sound description of the concepts involved in electronic and ionic charge transport in these liquids. It also includes experimental techniques that graduate students, university researchers, and laboratory scientists will all find useful. Data tables provide first-order information on the magnitude of relevant quantities. [Pg.351]

The 85th Edition includes updates and expansions of several tables, such as Aqueous Solubility of Organic Compounds, Thermal Conductivity of Liquids, and Table of the Isotopes. A new table on Azeotropic Data for Binary Mixtures has been added, as well as tables on Index of Refraction of Inorganic Crystals and Critical Solution Temperatures of Polymer Solutions. In response to user requests, several topics such as Coefficient of Friction and Miscibility of Organic Solvents have been restored to the Handbook. The latest recommended values of the Fundamental Physical Constants, released in December 2003, are included in this edition. Finally, the Appendix on Mathematical Tables has been revised by Dr. Daniel Zwillinger, editor of the CRC Standard Mathematical Tables and Formulae it includes new information on factorials, Clebsch-Gordan coefficients, orthogonal polynomials, statistical formulas, and other topics. [Pg.4]

It is unclear at this time whether this difference is due to the different anions present in the non-haloaluminate ionic liquids or due to differences in the two types of transport number measurements. The apparent greater importance of the cation to the movement of charge demonstrated by the transport numbers (Table 3.6-7) is consistent with the observations made from the diffusion and conductivity data above. Indeed, these data taken in total may indicate that the cation tends to be the majority charge carrier for all ionic liquids, especially the allcylimidazoliums. However, a greater quantity of transport number measurements, performed on a wider variety of ionic liquids, will be needed to ascertain whether this is indeed the case. [Pg.123]

The same data on physical properties of liquid refrigerants R-N (R-11, R-12, R-13, R-21, R-22, R-113) and their vapor are presented in Tables 7.3-7.8. The detailed data on thermophysical properties of different refrigerants (density, enthalpy, heat capacity, viscosity, thermal conductivity and diffusivity) are found in books by Platzer et al. (1990), Andersen (1959), and Danilova et al. (1976). [Pg.341]

In substitutional metallic solid solutions and in liquid alloys the experimental data have been described by Epstein and Paskin (1967) in terms of a predominant frictional force which leads to the accumulation of one species towards the anode. The relative movement of metallic ion cores in an alloy phase is related to the scattering cross-section for the conduction electrons, which in turn can be correlated with the relative resistance of the pure metals. Thus iron, which has a higher specific resistance than copper, will accumulate towards the anode in a Cu-Fe alloy. Similarly in a germanium-lithium alloy, the solute lithium atoms accumulate towards the cathode. In liquid alloys the same qualitative effect is observed, thus magnesium accumulates near the cathode in solution in bismuth, while uranium, which is in a higher Group of the Periodic Table than bismuth, accumulated near the anode in the same solvent. [Pg.154]

So far, we have focused on the melting points and polarities of ionic liquids. Like conventional solvents, other properties such as viscosity and density are also very important when selecting a solvent for synthetic applications. Whilst this type of data is well known for other solvents, relatively little has been reported for ionic liquids. Table 4.6 lists available melting points, thermal stability, density, viscosity and conductivity data for the better studied ionic liquids. [Pg.85]

Table I contains a list of some of the compounds that have been submitted to this type of analysis. The recovery data is intended to be illustrative only since recoveries depend strongly on several important method variables. Recoveries are expressed as a percentage of the amount added to organic free water. The purge time was 11-15 minutes with helium or nitrogen, the purge rate was 20 ml/minute at ambient temperature, and the trap was Tenax followed by Silica Gel. Data from the 5 ml sample was obtained with a custom made purging device and either flame ionization, microcoulo-metric, or electrolytic conductivity GC detectors. Data from the 25 ml sample was obtained with a Tekmar commercial liquid sample concentrator and a mass spectrometer GC detector using CRMS. Table I contains a list of some of the compounds that have been submitted to this type of analysis. The recovery data is intended to be illustrative only since recoveries depend strongly on several important method variables. Recoveries are expressed as a percentage of the amount added to organic free water. The purge time was 11-15 minutes with helium or nitrogen, the purge rate was 20 ml/minute at ambient temperature, and the trap was Tenax followed by Silica Gel. Data from the 5 ml sample was obtained with a custom made purging device and either flame ionization, microcoulo-metric, or electrolytic conductivity GC detectors. Data from the 25 ml sample was obtained with a Tekmar commercial liquid sample concentrator and a mass spectrometer GC detector using CRMS.
The book by Reid et al. [9] is an excellent source of information on properties such as thermal conductivities, diffusion coefficients and viscosities of gases and liquids. Not only are there extensive tables of data, but many estimation methods and correlations are critically reviewed. [Pg.23]

A first-order liquid-phase reaction takes place in a baffled stirred vessel of 2 volume under conditions when the flow rate is constant at 605 dm min and the reaction rate coefficient is 2.723 min the conversion of species A is 98%. Verify that this performance lies between that expected from either a PFR or a CSTR. Tracer impulse response tests are conducted on the reactor and the data in Table 6 recorded. Fit the tanks-in-series model to this data by (A) matching the moments, and (B) evaluating N from the time at which the maximum tracer response is observed. Give conversion predictions from the tanks-in-series model in each case. [Pg.251]

Table 3.2-3 Specific conductivity data for other room-temperature ionic liquids... [Pg.63]

Table 3.6-4 Specific conductivity data for binary haloaluminate ionic liquids. [Pg.115]


See other pages where Conductive liquids data table is mentioned: [Pg.59]    [Pg.114]    [Pg.59]    [Pg.568]    [Pg.114]    [Pg.370]    [Pg.3040]    [Pg.217]    [Pg.218]    [Pg.813]    [Pg.101]    [Pg.1284]    [Pg.249]    [Pg.369]    [Pg.154]    [Pg.117]    [Pg.121]    [Pg.210]    [Pg.1660]    [Pg.1343]    [Pg.84]    [Pg.290]    [Pg.28]    [Pg.78]    [Pg.889]    [Pg.114]    [Pg.117]   
See also in sourсe #XX -- [ Pg.227 , Pg.228 , Pg.229 , Pg.230 ]




SEARCH



Conductive liquids

Dielectric constants conductive liquids, data table

Liquid conductivity

Liquids table)

© 2024 chempedia.info