Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water condensed

Complementary to the matter of wetting is that of water repellency. Here, the desired goal is to make 6 as large as possible. For example, in steam condensers, heat conductivity is improved if the condensed water does not wet the surfaces, but runs down in drops. [Pg.470]

Reflux Distillation Unit. The apparatus shown in Fig. 38 is a specially designed distillation-unit that can be used for boiling liquids under reflux, followed by distillation. The unit consists of a vertical water-condenser A, the top of which is fused to the side-arm condenser B. The flask C is attached by a cork to A. This apparatus is particularly suitable for the hydrolysis of esters (p. 99) and anilides (p. 109), on a small scale. For example an ester is heated under reflux with sodium hydroxide solution while water is passed through the vertical condenser water is then run out of the vertical condenser and passed through the inclined condenser. The rate of heating is increased and any volatile product will then distil over. [Pg.64]

In very hot weather, the condenser water should first be chilled by passing it through a tall spiral of soft metal compo tubing immersed in a bucket of ice-water. [Pg.83]

A mist of condensed water on the upper portion of the tube A indicates the presence of hydrogen. To detect the presence of hydrogen in this way, however, the copper oxide must first be strongly heated in a crucible and then allowed to cool in a good desiccator otherwise the water normally absorbed by the very hygroscopic copper oxide will always give a mist on the tube A. [Pg.321]

During this process some water will have condensed in the steam-trap D and also in the distillation bulb F. If at the end of the steaming-out process, the Bunsen burner is removed from the generator A, the pressure in A will be reduced owing to steam condensation, and the liquid in F will be sucked back into D provided that the benL-over tube is carefully adjusted, the bulb F may be almost completely emptied of liquid as desired. Finally the condensed water in the steam-trap D may be run out by op ing the tap Tj. [Pg.494]

Decant the ethereal solution from the yellow aldimine stannichloride which has separated, rinse the solid with two 50 ml. portions of ether, and transfer the solid to a 2-5 litre flask fitted for steam distillation and immersed in an oil bath at 110-120°. Pass steam through a trap (compare Fig. 11,40, 1,6) to remove condensed water, then through a superheater heated to 260° (Fig. I, 7, 2), and finally into the mixture (2). Continue the passage of y steam until the aldehyde is completely removed (4-5 litres 8-10 hours). Filter the white soUd at the pump, and dry in the air. The resulting p-naphthaldehyde, m.p. 53-54°, weighs 12 g. It may be further purified by distillation under diminished pressure (Fig. II, 19, ) -, pour the colourless distillate, b.p. 156-158°/15 mm., while hot into a mortar and powder it when cold. The m.p. is 57- 58°, and the recovery is over 90 per cent. [Pg.698]

Type V isotherms of water on carbon display a considerable variety of detail, as may be gathered from the representative examples collected in Fig. 5.14. Hysteresis is invariably present, but in some cases there are well defined loops (Fig. 5.14(b). (t ), (capillary-condensed water. Extreme low-pressure hysteresis, as in Fig. 5.14(c) is very probably due to penetration effects of the kind discussed in Chapter 4. [Pg.266]

Steps. Thermal-swing cycles have at least two steps, adsorption and heating. A cooling step is also normally used after the heating step. A portion of the feed or product stream can be utilized for heating, or an independent fluid can be used. Easily condensable contaminants may be regenerated with noncondensable gases and recovered by condensation. Water-iminiscible solvents are stripped with steam, which may be condensed and separated from the solvent by decantation. Fuel and/or air may be used when the impurities are to be burned or incinerated. [Pg.279]

Sulfur. Sulfur in diesel fuel should be kept below set limits for both environmental and operational reasons. Operationally, high levels of sulfur can lead to high levels of corrosion and engine wear owing to emissions of SO that can react with condensed water during start-up to form sulfuric acids. From an environmental perspective, sulfur bums to SO2 and SO, the exact spHt being a function of temperature and time in the combustion chamber. [Pg.192]

Off-gases (top gas) leave the top of the furnace through uptake pipes, reverse direction ia the downcomer, and enter the dust catcher, ia which condensed water and dust are separated from the gases. The wet dust is emptied iato a rail car for transport to a siater plant for recycle or to a landfill. [Pg.420]

Water. Latices should be made with deionized water or condensate water. The resistivity of the water should be at least lO Q. Long-term storage of water should be avoided to prevent bacteria growth. If the ionic nature of the water is poor, problems of poor latex stabiUty and failed redox systems can occur. Antifreeze additives are added to the water when polymerization below 0°C is required (37). Low temperature polymerization is used to limit polymer branching, thereby increasing crystallinity. [Pg.24]

Metal anodes using platinum and precious metal oxide coatings are also incorporated into a variety of designs of impressed current protection for pipeline and deep weU appHcations, as weU as for protection of condenser water boxes in power generating stations (see Pipelines Power generation). [Pg.120]

Although most of the particulate in the off-gas from the furnace can be captured by the electrostatic precipitators before condensing the phosphoms, some carryover into the product is inevitable. This particulate is partly separated into the condenser water. The remainder reports to the phosphoms to yield either dirty product or a stable emulsion called phosphoms mud or sludge. Over many years a variety of approaches have been used to minimize the formation of sludge and to recover phosphoms product from the sludge. [Pg.351]

Eigure 3 is a flow diagram which gives an example of the commercial practice of the Dynamit Nobel process (73). -Xylene, air, and catalyst are fed continuously to the oxidation reactor where they are joined with recycle methyl -toluate. Typically, the catalyst is a cobalt salt, but cobalt and manganese are also used in combination. Titanium or other expensive metallurgy is not required because bromine and acetic acid are not used. The oxidation reactor is maintained at 140—180°C and 500—800 kPa (5—8 atm). The heat of reaction is removed by vaporization of water and excess -xylene these are condensed, water is separated, and -xylene is returned continuously (72,74). Cooling coils can also be used (70). [Pg.488]

The polyestetification reaction is reversible because it is induenced by the presence of condensate water in equiUbrium with the reactants and the polymer. The removal of water in the latter part of the reaction process is essential for the development of optimum molecular weight, on which the ultimate stmctural performance depends. [Pg.314]

Polyester resins can also be rapidly formed by the reaction of propylene oxide (5) with phthaUc and maleic anhydride. The reaction is initiated with a small fraction of glycol initiator containing a basic catalyst such as lithium carbonate. Molecular weight development is controlled by the concentration of initiator, and the highly exothermic reaction proceeds without the evolution of any condensate water. Although this technique provides many process benefits, the low extent of maleate isomerization achieved during the rapid formation of the polymer limits the reactivity and ultimate performance of these resins. [Pg.314]

Solvent Process. In the solvent process, or solvent cook, water formed from the reaction is removed from the reactor as an a2eotropic mixture with an added solvent, typically xylene. Usually between 3 to 10 wt % of the solvent, based on the total charge, is added at the beginning of the esterification step. The mixed vapor passes through a condenser. The condensed water and solvent have low solubiUty in each other and phase separation is allowed to occur in an automatic decanter. The water is removed, usually to a measuring vessel. The amount of water collected can be monitored as one of the indicators of the extent of the reaction. The solvent is continuously returned to the reactor to be recycled. Typical equipment for this process is shown in Figure 2. The reactor temperature is modulated by the amount and type of refluxing solvent. Typical conditions are ... [Pg.39]

Product warehouse(s) Process pipe hues—steam, condensate, water, gas, fuel oil, air, fire, instru-... [Pg.863]

Ejector (steam-jet) refrigeration systems are used for similar apph-cations, when chilled water-outlet temperature is relatively high, when relatively cool condensing water and cheap steam at 7 bar are available, and for similar high duties (0.3-5 MW). Even though these systems usually have low first and maintenance costs, there are not many steam-jet systems running. [Pg.1117]

Absorber is a component where strong absorber solution is used to absorb the water vapor flashed in the evaporator. A solution pump sprays the lithium bromide over the absorber tube section. Cool water is passing through the tubes taking refrigeration load, heat of dilution, heat to cool condensed water, and sensible heat for solution coohng. [Pg.1118]

Heat exchanger is used to improve efficiency of the cycle, reducing consumption of steam and condenser water. [Pg.1118]


See other pages where Water condensed is mentioned: [Pg.127]    [Pg.156]    [Pg.1696]    [Pg.171]    [Pg.194]    [Pg.289]    [Pg.492]    [Pg.16]    [Pg.16]    [Pg.600]    [Pg.602]    [Pg.608]    [Pg.110]    [Pg.239]    [Pg.480]    [Pg.86]    [Pg.314]    [Pg.359]    [Pg.363]    [Pg.473]    [Pg.418]    [Pg.242]    [Pg.326]    [Pg.478]    [Pg.478]    [Pg.1055]    [Pg.1113]    [Pg.1119]    [Pg.1120]    [Pg.1122]   
See also in sourсe #XX -- [ Pg.81 ]

See also in sourсe #XX -- [ Pg.237 , Pg.645 , Pg.654 ]

See also in sourсe #XX -- [ Pg.220 ]




SEARCH



Water condensation

Water-condensers

© 2024 chempedia.info