Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensation 1,3-dienes

Dieckmann cyclization (Sect. 22.4) An intramolecular Claisen condensation, diene (Sect. 17.1) A compound containing two carbon-carbon tt bonds. [Pg.1299]

Aldrin is obtained from the Diels-Alder addition product of cyclopentadiene and vinyl chloride by dehydrochlorination followed by condensation with hexachlorocyclopenta-diene. [Pg.20]

Figure 7-6 HMO output for Ftuta-1,3-diene (second screen, condensed). Figure 7-6 HMO output for Ftuta-1,3-diene (second screen, condensed).
The early Escherunoser-Stork results indicated, that stereoselective cyclizations may be achieved, if monocyclic olefins with 1,5-polyene side chains are used as substrates in acid treatment. This assumption has now been justified by many syntheses of polycyclic systems. A typical example synthesis is given with the last reaction. The cyclization of a trideca-3,7-dien-11-ynyl cyclopentenol leads in 70% yield to a 17-acetyl A-norsteroid with correct stereochemistry at all ring junctions. Ozonolysis of ring A and aldol condensation gave dl-progesterone (M.B. Gravestock, 1978 see p. 279f.). [Pg.91]

Discussion of ladder polymers also enables us to introduce a step-growth polymerization that deviates from the simple condensation reactions which we have described almost exclusively in this chapter. The Diels-Alder reaction is widely used in the synthesis of both ladder and semiladder polymers. In general, the Diels-Alder reaction occurs between a diene [XVI] and a dienophile [XVll] and yields an adduct with a ring structure [XVlll] ... [Pg.337]

Since the six carbons shown above have 10 additional bonds, the variety of substituents they carry or the structures they can be a part of is quite varied, making the Diels-Alder reaction a powerful synthetic tool in organic chemistry. A moment s reflection will convince us that a molecule like structure [XVI] is monofunctional from the point of view of the Diels-Alder condensation. If the Diels-Alder reaction is to be used for the preparation of polymers, the reactants must be bis-dienes and bis-dienophiles. If the diene, the dienophile, or both are part of a ring system to begin with, a polycyclic product results. One of the first high molecular weight polymers prepared by this synthetic route was the product resulting from the reaction of 2-vinyl butadiene [XIX] and benzoquinone [XX] ... [Pg.337]

The bifunctionality of the bis-diene and bis-dienophile monomers is apparent from the condensation product, structure [XXI], which still contains a diene and a dienophile in the same molecule. This polymer is crystalline, indicating a high degree of stereoregularity in the condensed rings. It decomposes to a graphitic material before melting. [Pg.338]

Heteroatom functionalized terpene resins are also utilized in hot melt adhesive and ink appHcations. Diels-Alder reaction of terpenic dienes or trienes with acrylates, methacrylates, or other a, P-unsaturated esters of polyhydric alcohols has been shown to yield resins with superior pressure sensitive adhesive properties relative to petroleum and unmodified polyterpene resins (107). Limonene—phenol resins, produced by the BF etherate-catalyzed condensation of 1.4—2.0 moles of limonene with 1.0 mole of phenol have been shown to impart improved tack, elongation, and tensile strength to ethylene—vinyl acetate and ethylene—methyl acrylate-based hot melt adhesive systems (108). Terpene polyol ethers have been shown to be particularly effective tackifiers in pressure sensitive adhesive appHcations (109). [Pg.357]

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

Cyclocondensation reactions with perfluoroalkyl-subsbtuted CO and CN multiple bond systems can be divided into several subgroups, according to the charge pattern of both reactants On the basis of this simple concept, hetero-l,3-dienes should undergo two types of condensation reactions, classified by the number of skeleton atoms of the diene being incorporated into the ring system (equation 10). [Pg.845]

Positively activated olefins have also been condensed with dienamines derived from aldehydes 321,330,347,348) and ketones. Of special interest is the formation of bridged systems from homoannular dienes (229-231) which has been applied to the isoquinuclidine system of the iboga alkaloids (137-140,349). [Pg.371]

A useful and possibly more general alternative to the Lwowski synthesis- of 1,3-diphenylisoindoles involves condensation of a l,2-dibenzoyl-l,4-cyclohexadiene (e.g., 55) with ammonia or a primary amine. Cyclohexadiene derivatives of this type are easily prepared by Riels-Alder addition of a 1,3-diene to dibenzoylacetylene, and these adducts lead directly, and in high yield, to the corresponding isoindoles (56). The reaction is closely related to the well-known synthesis of pyrroles by condensation of 1,4-diketones with ammonia. 4,7-Dihydro- and 4,5,6,7-tetrahydroisoindoles (57 and 58) have been... [Pg.127]

The method developed for preparation of telluradiazines 89 was applied to the synthesis of benzo derivatives of l-oxa-2-tellura-6-azacycloocta-3,5-diene 100 (99UP2). It involves dehydrobromination of bromotellurenylvinylaldimines 101, obtained by condensation of 2-methyldibromotellurocyclohexenealdehyde with o-aminophenols. Under a treatment of benzene suspension of 101 with triethyl-amine followed by short-term refluxing the reaction mixture the heterocycles 100 were obtained in 71-87% yields. [Pg.33]

A series of chiral binaphthyl ligands in combination with AlMe3 has been used for the cycloaddition reaction of enamide aldehydes with Danishefsky s diene for the enantioselective synthesis of a chiral amino dihydroxy molecule [15]. The cycloaddition reaction, which was found to proceed via a Mukaiyama aldol condensation followed by a cyclization, gives the cycloaddition product in up to 60% yield and 78% ee. [Pg.159]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

Self-condensation of the substituted propiophenone, 15, by the pinacol reaction proceeds to give the glycol, 16, as the meso isomer. (If it is assumed that the transition state for this reaction resembles product, this stereoselectivity can be rationalized on the grounds of steric interaction compare A, which leads to the observed product, with B.) Dehydration under very specialized conditions (acetyl chloride, acetic anhydride) affords the bisstyrene-type diene (17). Removal of the acyl groups by means of base affords the synthetic estrogen, dien-... [Pg.102]

When the removal of the ether is complete, the condenser is drained of water and the receiving flask is immersed in an ice bath. The condenser is heated by steam, if necessary, to prevent solidification of the distillate in the condenser. The distillation is resumed affording e i/o-tetrahydrodicyclopentadiene, bp 191-193, about 50 g (98%). The melting point varies with the purity of the starting diene but is usually above 65. ... [Pg.40]

HOHC[C(CH2OH)2]4CHOH, mw 356.36, can be prepd by reduction of the corresponding diene . Octamethylolcyclohexanedione, OC[C(CH2OH)2]4CO, mw 352.33, can be prepd by condensation of the corresponding cyclic ketone with aldehyde... [Pg.408]

Adipic acid, 219.2 g (1.5 mol), and 77.6 g (1.25 mol) of 1,2-ethanediol are weighed into a 500-mL glass reactor equipped with a mechanical stirrer, a nitrogen inlet, and a distillation head connected to a condenser and a receiver fiask. The reactor is placed in a salt bath preheated at 180°C and the temperature is dien raised gradually to 220°C (see note at end of procedure) until the greater part of water has been removed (3 h). The reactor is cooled down to 160°C and vacuum is applied slowly to ca. 0.07 mbar (30 min). Temperature is ramped to 220°C (see note below) at a rate of l°C/min and reaction is continued for an additional 90 min. At the end of reaction, the carboxylic acid endgroup content is close to 1.90 mol/kg. No purification of final polyester is carried out. [Pg.95]

Unsaturated polyesters were obtained by reacting the glycolyzed product widi maleic anhydride at a hydroxy-to-carboxyl ratio of 1 1. The hydroxyl number was determined without separation of die free glycol. The polyesterification reaction was conducted in a 2-L round-bottom dask equipped with a condenser, a gas bubbler, a thermowell, and a stirrer. The reaction mixture was heated from room temperature to 180°C in about 1-1.5 h. The temperature was maintained at 180°C for about 3 h, dien raised to 200°C and maintained until die acid value reached 32 mg KOH/g. [Pg.558]

Two-shot techniques for acyclic diene metathesis, 435-445 for polyamides, 149-164 for polyimides, 287-300 for polyurethanes, 241-246 for transition metal coupling, 483-490 Anionic deactivation, 360 Anionic polymerization, 149, 174 of lactam, 177-178 Apolar solvents, 90 Aprotic polar solvents, 185, 338 Aprotic solvents, low-temperature condensation in, 302 Aqueous coating formulations, 235 Aqueous polyoxymethylene glycol, depolymerization of, 377 Aqueous systems, 206 Ardel, 20, 22... [Pg.577]

Co-condensation of Hf and Zr atoms from an electron-gun evaporation device, with P(Me)3 and arenes at 77K gave good yields of the species [M(arene)2P(Me3)]. Metal vapor synthesis led to Fe(i7 -arene)L2 and Fe(i7 -arene)-(i7 -diene), where L is a phosphorus ligand. In addition, complexes of stoichiometry Fe(T) -diene)L3 (where L is again a... [Pg.167]

Complex I is formed if l,4-difluoro-2,3,5,6-tetramethyl-l,4-diboracyclohexa-2,5-diene and Ni(CO>4 are condensed with dry, degassed toluene into a tube on a vacuum line. When the tube is allowed to warm to RT for 30 min, the complex can be trapped as yellow crystals at — 30 C when all volatile material is pumped off. The sandwich... [Pg.71]


See other pages where Condensation 1,3-dienes is mentioned: [Pg.199]    [Pg.217]    [Pg.96]    [Pg.70]    [Pg.183]    [Pg.516]    [Pg.527]    [Pg.438]    [Pg.443]    [Pg.281]    [Pg.279]    [Pg.108]    [Pg.31]    [Pg.291]    [Pg.179]    [Pg.28]    [Pg.145]    [Pg.115]    [Pg.272]    [Pg.699]    [Pg.32]    [Pg.436]    [Pg.56]    [Pg.103]    [Pg.493]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



© 2024 chempedia.info