Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Composition diameter

Manufacturer Trademark Composition Diameter Strength Strain to Young s... [Pg.112]

Composition Diameter (nm) Standard Deviation Polydispersity Index... [Pg.19]

The calculated PBX-9502 results are presented in Tables 4.5 and 4.6. The effects of jet composition, diameter, and velocity were examined. The calculated profiles for a 0.4 cm diameter Copper jet with a 0.7 cm/ijsec initial velocity are shown in Figure 4.30. The Copper jet initiates an overdriven detonation smaller than the critical diameter, which enlarges to greater than the critical diameter of self-confined PBX-9502 when shocked by a 0.7 cm/ps Copper jet. When the PBX-9502 is shocked by a 0.5 cm/psec Copper jet, the detonation is decayed by side and rear rarefactions before it enlarges to the critical diameter, as shown in Figure 4.31. [Pg.233]

The second example shows results obtained with an angle beam probe for transverse waves in coarse grained grey cast iron. Two commercially available probes are compared the composite design SWK 60-2 and the standard design SWB 60-2. The reflector in this example is a side-drilled hole of 5 mm diameter. The A-scans displayed below in Fig. 5 and 6 show that the composite probe has a higher sensitivity by 12 dB and that the signal to noise ratio is improved by more than 6 dB. [Pg.709]

For immersion probes we also get similar improvements using piezocomposite transducers as demonstrated by the third example. In Fig. 8 we compare pulse form and frequency spectrum for a 2 MHz probe Z2K with 10 mm transducer diameter. The echo of the composite probe has 11 dB more amplitude and is clearly shorter than for the old design, also indicated by the increase in bandwidth from 45 to 76 %. [Pg.710]

Make a theoretical plot of surface tension versus composition according to Eq. III-53, and compare with experiment. (Calculate the equivalent spherical diameter for water and methanol molecules and take o as the average of these.)... [Pg.95]

The complete problem with composition gradients as well as a pressure gradient, may be regarded as a "generalized Poiseuille problem", and its Solution would be valuable for comparison with the limiting form of the dusty gas model for small dust concentrations. Indeed, it is the "large diameter" counterpart of the Knudsen solution in tubes of small diameter. [Pg.25]

Quantitative studies of solid-state organic reactions were performed by Glazman (267. 268). Equal amounts of acetic anhydride and 2-aminothiazole (grain diameter 0.15 mm) were mixed for 20 rain, and the mixture was heated in a glycerol bath at 0.5°C per minute. Heating curves showed that the reaction starts in the solid phase the use of an eutectic composition of organic reactants increases the yields. [Pg.52]

Fig. 4. Scanning electron micrograph of 5-p.m diameter Zn powder. Neck formation from localized melting is caused by high-velocity interparticle coUisions. Similar micrographs and elemental composition maps (by Auger electron spectroscopy) of mixed metal coUisions have also been made. Fig. 4. Scanning electron micrograph of 5-p.m diameter Zn powder. Neck formation from localized melting is caused by high-velocity interparticle coUisions. Similar micrographs and elemental composition maps (by Auger electron spectroscopy) of mixed metal coUisions have also been made.
Oxidation Step. A review of mechanistic studies of partial oxidation of propylene has appeared (58). The oxidation process flow sheet (Fig. 2) shows equipment and typical operating conditions. The reactors are of the fixed-bed shell-and-tube type (about 3—5 mlong and 2.5 cm in diameter) with a molten salt coolant on the shell side. The tubes are packed with catalyst, a small amount of inert material at the top serving as a preheater section for the feed gases. Vaporized propylene is mixed with steam and ak and fed to the first-stage reactor. The feed composition is typically 5—7% propylene, 10—30%... [Pg.152]

A surprisiagly large number of important iadustrial-scale separations can be accompHshed with the relatively small number of zeoHtes that are commercially available. The discovery, characterization, and commercial availabiHty of new zeoHtes and molecular sieves are likely to multiply the number of potential solutions to separation problems. A wider variety of pore diameters, pore geometries, and hydrophobicity ia new zeoHtes and molecular sieves as weU as more precise control of composition and crystallinity ia existing zeoHtes will help to broaden the appHcations for adsorptive separations and likely lead to improvements ia separations that are currently ia commercial practice. [Pg.303]

Pig. 6. A 0.3-mm-diameter cosmic spherule coUected from the ocean floor. The particle is composed of oUvine, glass, and magnetite and has a primary element composition similar to chondritic meteorites for nonvolatile elements. The shape is the result of melting and rapid recrystaUi2ation during... [Pg.100]

Besides the chemical composition, porosity is another property of stone which has great influence on its preservation. An increased porosity increases the exposed surface and pores allow movement of materials such as water and its solutes through the stones. If the pores are blocked or reduced in diameter such substances may be trapped within resulting in increased local interior damage. Exposure to the climatic elements is one important source of decay. Freeze-thaw cycles, in particular, result in pressures on the pore walls of the stone s interior from changes in volume during the phase transition... [Pg.425]

Electrodes. Because of the numerous different processes, there are many different types of electrodes in use (9), eg, prefabricated graphite, prefabricated carbon, self-baking, and composite electrodes (see Carbon). Graphite electrodes are used primarily in smaller furnaces or in sealed furnaces. Prebaked carbon electrodes, made in diameters of <152 cm or 76 by 61 cm rectangular, are used primarily in smelting furnaces where the process requkes them. However, self-baking electrodes are preferred because of thek lower cost. [Pg.123]

Several wick stmctures are in common use. First is a fine-pore (0.14—0.25 mm (100-60 mesh) wire spacing) woven screen which is roUed into an annular stmcture consisting of one or more wraps inserted into the heat pipe bore. The mesh wick is a satisfactory compromise, in many cases, between cost and performance. Where high heat transfer in a given diameter is of paramount importance, a fine-pore screen is placed over longitudinal slots in the vessel wall. Such a composite stmcture provides low viscous drag for Hquid flow in the channels and a small pore size in the screen for maximum pumping pressure. [Pg.514]

Above the solution treatment temperature (ca 1250°C), the alloy is single phase with a bcc crystal stmcture. During cooling to ca 750—850°C, the sohd solution decomposes spinodally into two other bcc phases a and lattice parameter composition. The matrix a-phase is rich in Ni and Al and weakly magnetic as compared with which is rich in Fe and Co. The a -phase tends to be rod-like in the (100) dkection and ca 10 nm in diameter and ca 100 nm long. As the temperature is decreased, segregation of the elements becomes mote pronounced and the difference between the saturation polarizations of the two phases increases. [Pg.380]


See other pages where Composition diameter is mentioned: [Pg.351]    [Pg.167]    [Pg.106]    [Pg.331]    [Pg.398]    [Pg.182]    [Pg.81]    [Pg.315]    [Pg.351]    [Pg.167]    [Pg.106]    [Pg.331]    [Pg.398]    [Pg.182]    [Pg.81]    [Pg.315]    [Pg.651]    [Pg.1640]    [Pg.2702]    [Pg.2903]    [Pg.66]    [Pg.70]    [Pg.28]    [Pg.651]    [Pg.270]    [Pg.23]    [Pg.23]    [Pg.36]    [Pg.45]    [Pg.98]    [Pg.106]    [Pg.278]    [Pg.366]    [Pg.448]    [Pg.69]    [Pg.88]    [Pg.149]    [Pg.377]    [Pg.52]    [Pg.8]    [Pg.133]    [Pg.159]   
See also in sourсe #XX -- [ Pg.82 , Pg.83 , Pg.84 , Pg.85 , Pg.86 , Pg.96 , Pg.224 , Pg.225 , Pg.226 ]

See also in sourсe #XX -- [ Pg.82 , Pg.83 , Pg.84 , Pg.85 , Pg.86 , Pg.96 , Pg.224 , Pg.225 , Pg.226 ]

See also in sourсe #XX -- [ Pg.82 , Pg.83 , Pg.84 , Pg.85 , Pg.86 , Pg.96 , Pg.224 , Pg.225 , Pg.226 ]




SEARCH



Composite characteristics fiber diameters

Fibre reinforced polymer composites diameter

© 2024 chempedia.info