Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Comonomers, cyclic

Typical comonomers Cyclic ethers, cyclic acetals,diketene, lactones, styrene (6, 7-10,... [Pg.445]

Cyclic ether and acetal polymerizations are also important commercially. Polymerization of tetrahydrofuran is used to produce polyether diol, and polyoxymethylene, an excellent engineering plastic, is obtained by the ring-opening polymerization of trioxane with a small amount of cycHc ether or acetal comonomer to prevent depolymerization (see Acetal resins Polyethers, tetrahydrofuran). [Pg.246]

The hydroformylation of acrolein cyclic acetals has received considerable attention in the recent patent literature as a route to 1,4-butanediol (76-52). This diol is a comonomer for the production of polybutylene terephthalate, an engineering thermoplastic. The standard method for its manufacture has been from acetylene and formaldehyde, as shown in Eqs. (37) and (38) ... [Pg.39]

The purpose of this review is to report on the recent developments in the macromolecular engineering of aliphatic polyesters. First, the possibilities offered by the living (co)polymerization of (di)lactones will be reviewed. The second part is devoted to the synthesis of block and graft copolymers, combining the living coordination ROP of (di)lactones with other living/controlled polymerization mechanisms of other cyclic and unsaturated comonomers. Finally, several examples of novel types of materials prepared by this macromolecular engineering will be presented. [Pg.6]

Pitt et al. [65], and more recently, Albertsson et al. [73], have prepared chemically cross-linked aliphatic polyesters by ROP of the corresponding cyclic ester monomers in the presence of Y,y -bis(e-caprolactone)-type comonomers (Scheme 17). The cross-linked films displayed different swelling behaviors, degradability, and elastomeric properties depending on the nature of the lactone and composition of the comonomers feed. [Pg.27]

A new class of functional comonomers exemplified by acrylamidobutyraldehyde dialkyl acetals 1 and their Interconvertible cyclic hemlamidal derivatives 2 were prepared and their chemistry was Investigated for use In polymers requiring post-crosslInking capability. These monomers do not possess volatile or extractable aldehyde components and exhibit additional crosslinking modes not found with conventional am1de/forma1dehyde condensates, eg, loss of ROH to form enamides 9 or TO and facile thermodynamically favored reaction with diols to form cyclic acetals. [Pg.453]

Vinyl substituted cyclic hemlamidals 2 and their Interconvertible acetal precursors (eg. acrylamldo-butyraldehyde dimethyl acetal 1) were Incorporated as latent crosslinkers and substrate reactive functional comonomers In solution and emulsion copolymers. Some use and applications data for copolymers prepared with these new monomers are presented. They show low energy cure potential, long shelf life and high catalyzed pot stability In solvent and aqueous media, good substrate reactivity and adhesion, and good product water and solvent resistance. They lack volatile or extractable aldehyde (eg. formaldehyde) components and show enhanced reactivity and hydrolytic stability with amines and diol functional substrates. [Pg.467]

For copolymerizations proceeding by the activated monomer mechanism (e.g., cyclic ethers, lactams, /V-carboxy-a-amino acid anhydrides), the actual monomers are the activated monomers. The concentrations of the two activated monomers (e.g., the lactam anions in anionic lactam copolymerization) may be different from the comonomer feed. Calculations of monomer reactivity ratios using the feed composition will then be incorrect. [Pg.601]

Isosorbide and equimolar amounts of various diols were polycondensed with diphosgene in p3ridine. Different bisphenols, l,3-bis(4-hydroxybenzyloxy)pro-pane, and 1,4-cyclohexane diol were used as comonomers [59]. In some cases, large amounts of cyclic oligo- and polycarbonates were formed. [Pg.160]

Ethylene glycol in the presence of an acid catalyst readily reacts with aldehydes and ketones to form cyclic acetals and ketals (60). 1,3-Dioxolane [646-06-0] is the product of condensing formaldehyde and ethylene glycol. Applications for 1,3-dioxolane are as a solvent replacement for methylene chloride, 1,2-dichloroethane, 1,1,1-trichloroethane, and methyl ethyl ketone as a solvent for polymers as an inhibitor in 1,1,1-trichloroethane as a polymer or matrix interaction product for metal working and electroplating in lithium batteries and in the electronics industry (61). 1,3-Dioxolane can also be used in the formation of polyacetals, both for homopolymerization and as a comonomer with formaldehyde. Cyclic acetals and ketals are used as protecting groups for reaction-sensitive aldehydes and ketones in natural product synthesis and pharmaceuticals (62). [Pg.362]

THF copolymerizes readily with other cyclic ethers such as oxides and oxetanes. The comonomers used include ethylene oxide (67), propylene oxide (99,100), epichlorohydrin (ECH) (101,102), phenyl glycidyl ether (102), 3.3-bis(chloromethyl) oxetane (BCMO) (25, 98, 101, 103) and 3-methyl-3-chloromethyl oxetane (103). Just as in THF homo-polymerization, a large variety of catalysts have veen used. In many cases the kinetics of copolymerization have been studied. Table 22 summarizes the monomer reactivity ratios, rx (THF), and r2 (comonomer) which have... [Pg.584]

The results obtained show clearly that, although a general improvement in all the thermal properties of the material was obtained, this was relevant only in the presence of high amounts of the cyclic comonomer. This is obviously ascribable to the high intrinsic flexibility of the propylene succinate structure. [Pg.159]

Since oxiranes are representative heterocyclic monomers containing an endo-cyclic heteroatom, and the most commonly polymerised of such monomers, they have been subjected to copolymerisations with heterocyclic monomers containing both an endocyclic and an exocyclic heteroatom. Coordination copolymerisations of heterocyclic monomers with different functions are focused on oxirane copolymerisation with cyclic dicarboxylic acid anhydride and cyclic carbonate. However, the statistical copolymerisation of heterocyclic monomers with an endocyclic heteroatom and monomers with both endocyclic and exocyclic heteroatoms have only a limited importance. Also, the block copolymerisation of oxirane with lactone or cyclic dicarboxylic acid anhydride is of interest both from the synthetic and from the mechanistic point of view. Block copolymerisation deserves special interest in terms of the exceptionally wide potential utility of block copolymers obtained from comonomers with various functions. It should be noted, however, that the variety of comonomers that might be subjected to a random, alternating and block polymerisation involving a nucleophilic attack on the coordinating monomer is rather small. [Pg.467]

It seems that the initiation step of the copolymerisation most likely involves the oxirane reaction [according to scheme (3)]. Zinc alcoholate species formed in this reaction can easily propagate the copolymer chain, coordinating and enchaining both the oxirane [scheme (3)] and the cyclic carbonate [scheme (15)] comonomers. However, in the case of the cyclic carbonate, its enchainment may also proceed according to scheme (14), leading to decarboxylation. Thus, the obtained poly(ether-carbonate)s are characterised by a lower content of carbonate units with respect to the ether units [82,146]. [Pg.470]

It has been reported that the effectiveness of copolymerized DOPO-type monomers can be further improved if the alcohol-amine derivatives of DOPO, for example, Structure 5.11, are used rather than similar structures not containing nitrogen.30 Of the FR fibers based on P-containing comonomers, it has been found that those based on Structure 5.10 are more hydrolytically stable, presumably because the P-containing group is in a cyclic structure and also should the hydrolysis of the P-0 bond occur, it will not lead automatically to a marked reduction in molecular weight.31 All the P-modified PETs appear to be subject to both the vapor-and condensed-phase mechanisms of flame retardance, with the former predominating.32 33... [Pg.114]

Strained cyclic olefins like cyclobutene, cyclopentene, and norbonene can be used as monomers and comonomers in a wide variety of polymers. Generally... [Pg.174]

In the random copolymerization process, both types of active species should be able to participate in the cross-propagation reactions. This imposes certain limitations on the choice of comonomers in the cationic polymerization of heterocyclic monomers. Onium ions, being the active species of these polymerizations, differ considerably in reactivity thus, as already discussed, oxonium ions initiate the polymerization of cyclic amines, whereas ammonium ions do not initiate the polymerization of cyclic ethers and the corresponding cross-propagation reaction would not proceed ... [Pg.538]

Thus, random copolymerization of cyclic ethers with cyclic amines is not possible. The other limitation, which will be discussed in more detail in a later part of this section, is the reversibility of homo- and/or crosspropagation steps, when one or both comonomers polymerize reversibly. [Pg.538]

The main feature of polymers is their MMD, which is well known and understood today. However, several other properties in which the breadth of distribution are important and influence polymer behavior (see Figure 1) include physical, the classical chain-length distribution chemical, two or more comonomers are incorporated in different fractions topological, polymer architecture may differ (e.g., linear, branched, grafted, cyclic, star or comb-like, and dendritic) structural, comonomer placement may be random, block, alternating, and so on and functional, distribution of chain functions (e.g., all chain ends or only some carry specific groups). Other properties the polymers may disperse (tacticity and crystallite dimensions) are not of the same general interest or cannot be characterized by solution methods. [Pg.224]


See other pages where Comonomers, cyclic is mentioned: [Pg.29]    [Pg.29]    [Pg.364]    [Pg.15]    [Pg.19]    [Pg.111]    [Pg.4]    [Pg.162]    [Pg.179]    [Pg.337]    [Pg.12]    [Pg.364]    [Pg.840]    [Pg.100]    [Pg.321]    [Pg.467]    [Pg.477]    [Pg.481]    [Pg.142]    [Pg.144]    [Pg.114]    [Pg.389]    [Pg.176]    [Pg.781]    [Pg.11]    [Pg.207]   
See also in sourсe #XX -- [ Pg.117 ]




SEARCH



Comonomer

Comonomers

Comonomers, cyclic reactive

Polyolefins cyclic comonomers

© 2024 chempedia.info