Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coloured mechanisms

In order to bridge the gap between an SHG-active material and one optimized for use in an optoelectronic device, many compounds have been synthesized, characterized, modified and then ultimately rejected during the past decade (i-3). This is not surprising, since the ideal material must fulfil a plethora of stringent requirements (4-7). The most critical condition for an SHG-active material is that it must form noncentrosymmetric structures however, thermal stability, in volatility, transparency, lack of colour, mechanical strength and crystal habit are also crucial properties for materials to be incorporated into practical devices. [Pg.514]

Deng J. C., Zhong C. F. and Tong J., Oxidation colouring mechanism of cerium with catechol derivatives. J. Chin. Rare Earth Soc. 15(1997) pp. 252-256. [Pg.359]

Figure 12 Colouration mechanism of 40 under acidic conditions... Figure 12 Colouration mechanism of 40 under acidic conditions...
There is a highly complex series of connections between the detector and fibres making up the optic nerve taking the resulting signals to the visual cortex. This link can be depicted using a simplified hypothetical framework (Hunt 1998). There appear to be not four but three types of nerve fibre. One carries achromatic or brightness information, the other two carry colour information -the opponent colour mechanisms. This model is shown in Fig. 2.2. [Pg.18]

Colouring mechanism of red ceramic pigments based on perovskite structure. [Pg.285]

Consider Raman transitions between thennalized molecular eigenstate g (ground) and molecular eigenstate/ (final). The quantum mechanical expression for responding to colours and j is the famous (thennalized) Kramers-Heisenbergequation [29]... [Pg.1192]

In a 1-litre three-necked flask, fitted with a mechanical stirrer, reflux condenser and a thermometer, place 200 g. of iodoform and half of a sodium arsenite solution, prepared from 54-5 g. of A.R. arsenious oxide, 107 g. of A.R. sodium hydroxide and 520 ml. of water. Start the stirrer and heat the flask until the thermometer reads 60-65° maintain the mixture at this temperature during the whole reaction (1). Run in the remainder of the sodium arsenite solution during the course of 15 minutes, and keep the reaction mixture at 60-65° for 1 hour in order to complete the reaction. AUow to cool to about 40-45° (2) and filter with suction from the small amount of solid impurities. Separate the lower layer from the filtrate, dry it with anhydrous calcium chloride, and distil the crude methylene iodide (131 g. this crude product is satisfactory for most purposes) under diminished pressure. Practically all passes over as a light straw-coloured (sometimes brown) liquid at 80°/25 mm. it melts at 6°. Some of the colour may be removed by shaking with silver powder. The small dark residue in the flask solidifies on cooling. [Pg.300]

Equip a 500 ml. three necked flask with a reflux condenser, a mercury-sealed mechanical stirrer and separator funnel, and support it on a water bath. Attach an absorption device (Fig. II, 8, 1, c) to the top of the condenser (1). Place 134 g. (152 ml.) of A.R, benzene and 127 g. of iodine in the flask, and heat the water bath to about 50° add 92 ml. of fuming nitric acid, sp. gr. 1-50, slowly from the separatory funnel during 30 minutes. Oxides of nitrogen are evolved in quantity. The temperature rises slowly without the application of heat until the mixture boils gently. When all the nitric acid has been introduced, reflux the mixture gently for 15 minutes. If iodine is still present, add more nitric acid to the warm solution until the purple colour (due to iodine) changes to brownish-red. [Pg.538]

Place 84 g. of iron filings and 340 ml. of water in a 1 - 5 or 2-litre bolt-head flask equipped with a mechanical stirrer. Heat the mixture to boiling, stir mechanically, and add the sodium m-nitrobenzenesulphonate in small portions during 1 hour. After each addition the mixture foams extensively a wet cloth should be applied to the neck of the flask if the mixture tends to froth over the sides. Replace from time to time the water which has evaporated so that the volume is approximately constant. When all the sodium salt has been introduced, boU the mixture for 20 minutes. Place a small drop of the suspension upon filter paper and observe the colour of the spot it should be a pale brown but not deep brown or deep yellow. If it is not appreciably coloured, add anhydrous sodium carbonate cautiously, stirring the mixture, until red litmus paper is turned blue and a test drop upon filter paper is not blackened by sodium sulphide solution. Filter at the pump and wash well with hot water. Concentrate the filtrate to about 200 ml., acidify with concentrated hydrochloric acid to Congo red, and allow to cool. Filter off the metanilic acid and dry upon filter paper. A further small quantity may be obtained by concentrating the mother liquid. The yield is 55 g. [Pg.589]

Add 101 g. (55 ml.) of concentrated sulphuric acid cautiously to 75 ml. of water contained in a 1 htre beaker, and introduce 35 g. of finely-powdered wi-nitroaniline (Section IV,44). Add 100-150 g. of finely-crushed ice and stir until the m-nitroaniUne has been converted into the sulphate and a homogeneous paste results. Cool to 0-5° by immersion of the beaker in a freezing mixture, stir mechanically, and add a cold solution of 18 g. of sodium nitrite in 40 ml. of water over a period of 10 minutes until a permanent colour is immediately given to potassium iodide - starch paper do not allow the temperature to rise above 5-7° during the diazotisation. Continue the stirring for 5-10 minutes and allow to stand for 5 minutes some m-nitrophenjddiazonium sulphate may separate. Decant the supernatant Uquid from the solid as far as possible. [Pg.614]

Into a 1-litre beaker, provided with a mechanical stirrer, place 36 - 8 g. (36 ml.) of aniline, 50 g. of sodium bicarbonate and 350 ml. of water cool to 12-15° by the addition of a little crushed ice. Stir the mixture, and introduce 85 g. of powdered, resublimed iodine in portions of 5-6 g, at intervals of 2-3 minutes so that all the iodine is added during 30 minutes. Continue stirring for 20-30 minutes, by which time the colour of the free iodine in the solution has practically disappeared and the reaction is complete. Filter the crude p-iodoaniline with suction on a Buchner funnel, drain as completely as possible, and dry it in the air. Save the filtrate for the recovery of the iodine (1). Place the crude product in a 750 ml. round-bottomed flask fitted with a reflux double surface condenser add 325 ml. of light petroleum, b.p. 60-80°, and heat in a water bath maintained at 75-80°. Shake the flask frequently and after about 15 minutes, slowly decant the clear hot solution into a beaker set in a freezing mixture of ice and salt, and stir constantly. The p-iodoaniline crystallises almost immediately in almost colourless needles filter and dry the crystals in the air. Return the filtrate to the flask for use in a second extraction as before (2). The yield of p-iodoaniline, m.p. 62-63°, is 60 g. [Pg.647]

P-Hydroxy-a-naphthaldehyde, Equip a 1 litre three-necked flask with a separatory funnel, a mercury-sealed mechanical stirrer, and a long (double surface) reflux condenser. Place 50 g. of p-naphthol and 150 ml. of rectified spirit in the flask, start the stirrer, and rapidly add a solution of 100 g. of sodium hydroxide in 210 ml. of water. Heat the resulting solution to 70-80° on a water bath, and place 62 g. (42 ml.) of pure chloroform in the separatory funnel. Introduce the chloroform dropwise until reaction commences (indicated by the formation of a deep blue colour), remove the water bath, and continue the addition of the chloroform at such a rate that the mixture refluxes gently (about 1 5 hours). The sodium salt of the phenolic aldehyde separates near the end of the addition. Continue the stirring for a further 1 hour. Distil off the excess of chloroform and alcohol on a water bath use the apparatus shown in Fig. II, 41, 1, but retain the stirrer in the central aperture. Treat the residue, with stirring, dropwise with concentrated hydrochloric acid until... [Pg.704]

W. S. Stiles, Mechanisms of Colour Vision, Academic Press, Inc., New York, 1978. [Pg.424]

Copper(II), di-/Lt-bromobis[bromo(pyridine)-structure, 2, 108 Copper 8-hydroxyquinolinate biocidal activity mechanism, 1, 401 fungicide, 1, 399 Copper nitrotetrazole as propellants, 5, 837 Copper phthalocyanine, 1, 333-334 colour and constitution, 1, 345 Coproporphyrin, 4, 382 Coproporphyrin, dehydro-, 4, 382... [Pg.585]


See other pages where Coloured mechanisms is mentioned: [Pg.459]    [Pg.36]    [Pg.103]    [Pg.193]    [Pg.63]    [Pg.379]    [Pg.45]    [Pg.63]    [Pg.459]    [Pg.36]    [Pg.103]    [Pg.193]    [Pg.63]    [Pg.379]    [Pg.45]    [Pg.63]    [Pg.791]    [Pg.264]    [Pg.26]    [Pg.161]    [Pg.299]    [Pg.301]    [Pg.337]    [Pg.479]    [Pg.579]    [Pg.600]    [Pg.605]    [Pg.607]    [Pg.617]    [Pg.636]    [Pg.640]    [Pg.703]    [Pg.758]    [Pg.774]    [Pg.776]    [Pg.804]    [Pg.835]    [Pg.863]    [Pg.955]    [Pg.965]    [Pg.983]    [Pg.993]    [Pg.55]    [Pg.511]   
See also in sourсe #XX -- [ Pg.245 ]




SEARCH



© 2024 chempedia.info