Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coelution, chromatography

An interesting and practical example of the use of thermodynamic analysis is to explain and predict certain features that arise in the application of chromatography to chiral separations. The separation of enantiomers is achieved by making one or both phases chirally active so that different enantiomers will interact slightly differently with the one or both phases. In practice, it is usual to make the stationary phase comprise one specific isomer so that it offers specific selectivity to one enantiomer of the chiral solute pair. The basis of the selectivity is thought to be spatial, in that one enantiomer can approach the stationary phase closer than the other. If there is no chiral selectivity in the stationary phase, both enantiomers (being chemically identical) will coelute and will provide identical log(Vr ) against 1/T curve. If, however, one... [Pg.80]

Flow markers are often chosen to be chemically pure small molecules that can fully permeate the GPC packing and elute as a sharp peak at the total permeation volume (Vp) of the column. Examples of a few common flow markers reported in the literature for nonaqueous GPC include xylene, dioctyl phthalate, ethylbenzene, and sulfur. The flow marker must in no way perturb the chromatography of the analyte, either by coeluting with the analyte peak of interest or by influencing the retention of the analyte. In all cases it is essential that the flow marker experience no adsorption on the stationary phase of the column. The variability that occurs in a flow marker when it experiences differences in how it adsorbs to a column is more than sufficient to obscure the flow rate deviations that one is trying to monitor and correct for. [Pg.549]

TLC analysis of the crude product (elution with 50 1 pentane ether, visualization with iodine) showed three non-baseline spots Rf 0.65 (cis isomer), Rf 0.52 (unknown impurity), and Rf 0.32 (trans isomer). The unknown impurity is intensely sensitive to iodine and largely coelutes with the cw-isomer in the subsequent column chromatography. However, the ll NMR spectrum of this isomer shows excellent purity despite the presence of this spot on TLC. In 100 1 pentane ether, Rf values of the cis and trans isomers are about 0.50 and 0.15, respectively. [Pg.10]

To obtain reliable chromatograms in the final step of the determination of the analytes by LC or GC, it is important to remove interfering signals resulting from coelution of other compounds. To this end, a variety of techniques are applied for cleanup of the sample extract. The most effective procedures for sample cleanup for PAH measurements are partitioning between M, N-dimethylformamide/water/cyclo-hexane and LC on silica and on Sephadex LH 20. Other cleanup procedures include LC on alumina or XAD-2 and preparative thin-layer chromatography. [Pg.99]

As has been pointed out, both entropic and enthalpic interactions affect the chromatographic behavior of macromolecules. They are adjusted to the required type of separation by selecting appropriate stationary and mobile phases. In a third mode of liquid chromatography of polymers, liquid chromatography at the critical condition (LCCC) (Entelis etal., 1985,1986 Pasch, 1997), the adsorptive interactions are fully compensated by entropic interactions. This mode is also referred to as liquid chromatography at the critical point of adsorption. Hence, TAS is equal to AH and therefore, AG becomes zero. K is 1 irrespective of molar mass and, consequently, homopolymer molecules of different molar masses coelute in one chromatographic... [Pg.391]

In chromatography techniques, selectivity can be proved by the existence of good separation between the analyte and the other components (such as the matrix, impurities, degradation product(s), and metabolites). A consequence of this requirement is that the resolution of the analyte from the other components should be more than 1.5-2.0. In order to detect the possibility of coelution of other substance(s), the purity of the analyte peak should also be determined. For instance, the UV-Vis spectrum of the analyte peak/spot can be used to determine 4the purity of the analyte peak/spot, in this case the correlation coefficient V (this term is used by the software of DAD System Manager Hitachi, and CATS from Camag). With the same meaning and mathematical equation, other terms are used, such as Match... [Pg.246]

Ultraviolet spectroscopy is not as useful in detecting the -NC function. Despite its limitation, coeluting isothiocyano compounds are UV active ( 250 nm, e 1200) [27c]. Thus, a UV monitor can be interfaced with an LH-20 or silica column to detect column fractions containing -NCS compounds. Final resolution of enriched mixtures of previously fractionated isonitrile-related compounds is achieved by examining the responses generated by UV and RI detectors coupled in liquid chromatography. [Pg.45]

The power of the system to overcome the problems associated with coeluting compounds is demonstrated in conjunction with the use of deuterated (or13C-labelled compounds) as internal standards. Such techniques could not be used in conventional gas chromatography as the deuterated compounds often co-elute, making quantification difficult if not impossible. With the ion-trap detector, however, it is easily possible to differentiate between the ions arising from the different compounds and the intensities of these ions could then be used for quantification of the compounds involved. The application of such techniques can be shown by... [Pg.75]

Many separation and detection methods applied in combination with liquid chromatography (LC) that are described in the literature for the determination of surfactants are not specific to the detection of these compounds at trace levels. Even ultraviolet (UV) spectra obtained from diode array detectors often give only limited information. Furthermore, non-reproducible retention behaviour as well as coelution interference effects are frequently observed during the separation of surfactant-containing extracts. This is recognised, however, only in those cases where specific detection methods such as mass spectrometry (MS) are applied. [Pg.25]

Citrus volatiles have been extensively examined over the last several decades and several reviews have summarised composition and concentration data which existed at that time [1-7]. Careful attention should be paid to the analytical technology employed in each study cited. Many of the early studies employed packed-column gas chromatography (GC) which had limited resolving power. Results from these studies should therefore not be accepted uncritically. Studies employing high-resolution capillary GC are less prone to coelution and are probably more reliable. [Pg.118]

Polysorbate 80 is widely used as a nonionic surfactant in liquid pharmaceutical products such as inhalation, suspension, and nasal suspension products, due to its properties of solubilization, reduction of surface and interfacial tension, and wetting. Direct analysis of Polysorbate 80 is quite time consuming. Size-exclusion chromatography (SEC) has been reported [5] in which a mobile phase contained the surfactant at concentrations above the critical micelle concentration. Polysorbate 80 appeared as a very broad peak and coeluted with other peaks, which makes quantification in Nasonex impossible. [Pg.89]


See other pages where Coelution, chromatography is mentioned: [Pg.83]    [Pg.303]    [Pg.92]    [Pg.863]    [Pg.436]    [Pg.438]    [Pg.863]    [Pg.380]    [Pg.802]    [Pg.264]    [Pg.32]    [Pg.182]    [Pg.1239]    [Pg.1250]    [Pg.1253]    [Pg.38]    [Pg.137]    [Pg.39]    [Pg.485]    [Pg.43]    [Pg.62]    [Pg.460]    [Pg.237]    [Pg.570]    [Pg.83]    [Pg.87]    [Pg.248]    [Pg.61]    [Pg.27]    [Pg.478]    [Pg.618]    [Pg.172]    [Pg.30]    [Pg.594]    [Pg.1239]    [Pg.1250]    [Pg.1253]    [Pg.234]    [Pg.28]   
See also in sourсe #XX -- [ Pg.282 ]




SEARCH



Coeluting

© 2024 chempedia.info