Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt complexes carbon dioxide

Cobalt(II) alkoxides are known and monomeric forms are part of a wider review.413 The interest in these compounds pertains to a potential role in catalysis. For example, a discrete cobalt(II) alkoxide is believed to form in situ from a chloro precursor during reaction and performs the catalytic role in the decomposition of dialkyl pyrocarbonates to dialkyl carbonates and carbon dioxide.414 A number of mononuclear alkoxide complexes of cobalt(II) have been characterized by crystal structures, as exemplified by [CoCl(OC(t-Bu)3)2 Li(THF)].415 The Co ion in this structure and close relatives has a rare distorted trigonal-planar coordination geometry due to the extreme steric crowding around the metal. [Pg.44]

This may be of significance in connetion with the biosynthesis of acetate from carbon dioxide, because the next step, the fixation of carbon monoxide, was demonstrated by B. Krautler. He irradiated methyl cobalamin under Co at 30 atm and obtained the acyl cobalamin as the product. Interestingly, a radical mechanism was iproposed, involving the reaction of methyl radicals with CO to give acyl radicals, which then recombine with the cobalt complex /55/. [Pg.150]

The carbon dioxide anion-radical was used for one-electron reductions of nitrobenzene diazo-nium cations, nitrobenzene itself, quinones, aliphatic nitro compounds, acetaldehyde, acetone and other carbonyl compounds, maleimide, riboflavin, and certain dyes (Morkovnik and Okhlobystin 1979). The double bonds in maleate and fumarate are reduced by CO2. The reduced products, on being protonated, give rise to succinate (Schutz and Meyerstein 2006). The carbon dioxide anion-radical reduces organic complexes of Co and Ru into appropriate complexes of the metals(II) (Morkovnik and Okhlobystin 1979). In particular, after the electron transfer from this anion radical to the pentammino-p-nitrobenzoato-cobalt(III) complex, the Co(III) complex with thep-nitrophenyl anion-radical fragment is initially formed. The intermediate complex transforms into the final Co(II) complex with the p-nitrobenzoate ligand. [Pg.60]

Abstract This chapter focuses on well-defined metal complexes that serve as homogeneous catalysts for the production of polycarbonates from epoxides or oxetanes and carbon dioxide. Emphasis is placed on the use of salen metal complexes, mainly derived from the transition metals chromium and cobalt, in the presence of onium salts as catalysts for the coupling of carbon dioxide with these cyclic ethers. Special considerations are given to the mechanistic pathways involved in these processes for the production of these important polymeric materials. [Pg.2]

On the other hand, in two other papers, the formation of hydrogen gas was not mentioned, whereas carbon monoxide and formic acid were both observed as products. In studies carried out by Ogura and coworkers [123], electrogenerated [Co(PPh3)2L] (where L is a substituted quinoline, bipyridine, or phenan-throline moiety) was employed as a catalyst for the reduction of CO2 in anhydrous organic solvents, conditions for which the current efficiency for production of CO (the main product) was 83%. Similarly, in an investigation done by Behar et al. [124], who used cobalt porphyrins as catalysts in an acetonitrile medium, the formation of both carbon monoxide and formic acid was noted however, the catalytic species did not appear to contain cobalt(I), but rather a cobalt(O) species complexed with carbon dioxide. [Pg.549]

Carbonic anhydrase is a zinc(II) metalloenzyme which catalyzes the hydration and dehydration of carbon dioxide, C02+H20 H+ + HC03. 25 As a result there has been considerable interest in the metal ion-promoted hydration of carbonyl substrates as potential model systems for the enzyme. For example, Pocker and Meany519 studied the reversible hydration of 2- and 4-pyridinecarbaldehyde by carbonic anhydrase, zinc(II), cobalt(II), H20 and OH. The catalytic efficiency of bovine carbonic anhydrase is ca. 108 times greater than that of water for hydration of both 2- and 4-pyridinecarbaldehydes. Zinc(II) and cobalt(II) are ca. 107 times more effective than water for the hydration of 2-pyridinecarbaldehyde, but are much less effective with 4-pyridinecarbaldehyde. Presumably in the case of 2-pyridinecarbaldehyde complexes of type (166) are formed in solution. Polarization of the carbonyl group by the metal ion assists nucleophilic attack by water or hydroxide ion. Further studies of this reaction have been made,520,521 but the mechanistic details of the catalysis are unclear. Metal-bound nucleophiles (M—OH or M—OH2) could, for example, be involved in the catalysis. [Pg.474]

The following procedure is based on the reaction of an aqueous solution of cobalt(II) chloride with the equivalent amount of (2-aminoethyl)carbamic acid, followed by oxidation with hydrogen peroxide and the subsequent formation of bis(ethylene-diamine)cobalt(III) ions. The bis(ethylenediamine)cobalt(lII) species are converted to the carbonato complex by reaction with lithium hydroxide and carbon dioxide. During the entire preparation a vigorous stream of carbon dioxide is bubbled through the reaction mixture. This procedure appears to be essential in order to minimize the formation of tris(ethylenediamine)cobalt(III) chloride as a by-product. However, the formation of a negligible amount of the tris salt cannot be avoided. The crude salts have a purity suitable for preparative purposes. The pure salts are obtained by recrystallization from aqueous solution. [Pg.65]

To 27.5 g. (0.1 mole) of crude (carbonato)bis(ethylenediamine)-cobalt(III) chloride is added 200 ml. of 1.00 N hydrochloric acid. The carbonato complex is dissolved with evolution of carbon dioxide gas and formation of a red solution consisting primarily of the corresponding cw-diaqua species. The solution is evaporated in the steam bath until an almost dry paste has been formed. The purple residue is filtered and washed with three 20-ml. portions of ice-cold water. Drying in air yields 19.5 g. of purple crystals of cu-dichlorobis(ethylenediamine)cobalt(III) chloride. The mother liquor and the washings are again evaporated almost to dryness to yield a second crop of crystals, 5.9 g. The total yield is 25.4 g. (84% based on (carbonato)bis(ethylenediamine)cobalt(III) chloride). The analysis and the visible absorption spectrum of the two fractions are identical. Anal. Calcd. for [Co(en)2Cl2 ] C1 H20 Co, 19.42 N, 18.46 C, 15.82 Cl, 35.05 H, 5.98. Found Co, 19.50 N, 18.57 C, 15.77 C1, 35.15 H, 6.01. [Pg.70]

Fisher and Eisenberg (107) have reported on the electrocatalytic reduction of carbon dioxide using macrocycle complexes of nickel and cobalt (e.g., complex 27). An indirect electrochemical reduction of C02 was ac-... [Pg.156]

Tris(phenylbiguanido)cobalt(III) hydroxide, [Co(C6-H5C2N6H5) 3]-3H20 or [Co(C6H6C2N6H6) 3] (OH) 3, forms rose-red crystals which melt with decomposition near 200° and are insoluble in water and alcohol. The compound absorbs carbon dioxide from the atmosphere and liberates ammonia from solutions of ammonium salts on boiling. Boiling water and alkali have no action upon the complex base, but concentrated acids decompose it. The anhydrous material may be obtained by heating the hydrate to 145 to 150° for 24 hours, but it readily absorbs water on exposure to air. The substance is preserved in an atmosphere free from carbon dioxide. [Pg.73]

Tinnemans, A.H.A., Koster, T.P.M., Thewissen, D.H.M.W. and Mackor A. 1984. Tetraaza-macrocyclic cobalt(II) and nickel(II) complexes as electrontransfer agents in the photo( electro )chemical and electrochemical reduction of carbon dioxide. Recl.Trav.Chim. Pavs-Bas 103. 288-295. [Pg.7]

The procedure described here is based on the observation that amine monohydroxo complexes of cobalt(III), rhodium(IIl), and iridium(III) react directly with carbon dioxide to form the corresponding carbonato complexes,2 3 without effect on the configuration of the amine ligands.4 The amine monoaqua complex is allowed to react with lithium carbonate or carbon dioxide gas at room temperature at pH 8.0 for a few minutes, and the carbonato complex is isolated by adding alcohol. The procedure has been used to prepare salts of the following cations pentaammine(carbonato)-cobalt(III),2 ds-ammine(carbonato)bis(ethylenediamine)cobalt(III),5 trans-... [Pg.152]

All of the carbonato cobalt(III) complexes reported here are reddish in color and extremely soluble in water. The rhodium complex is pale-yellow, whereas the iridium salt is virtually white they are both soluble in water. Treatment with dilute acid immediately gives the corresponding aqua complex with evolution of carbon dioxide. The characterization and the mechanistic details of acid hydrolysis of these complexes have been reported.3,4,11... [Pg.154]


See other pages where Cobalt complexes carbon dioxide is mentioned: [Pg.791]    [Pg.240]    [Pg.791]    [Pg.4245]    [Pg.459]    [Pg.109]    [Pg.1403]    [Pg.155]    [Pg.924]    [Pg.28]    [Pg.272]    [Pg.23]    [Pg.182]    [Pg.132]    [Pg.924]    [Pg.41]    [Pg.16]    [Pg.125]    [Pg.1074]    [Pg.69]    [Pg.71]    [Pg.73]    [Pg.74]    [Pg.132]    [Pg.1450]    [Pg.74]    [Pg.1403]    [Pg.555]    [Pg.199]    [Pg.189]    [Pg.120]   
See also in sourсe #XX -- [ Pg.61 ]




SEARCH



Carbon complex

Carbon dioxide, complex

Carbonate complexation

Carbonate) complexes

Cobalt carbonate

Cobalt complexes carbon dioxide reactions

Cobalt complexes carbonates

Cobalt- carbon dioxide complex, coordination

Cobaltic carbonate

© 2024 chempedia.info