Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Classical Unimolecular Rate Theory

To solve this differential equation in conjunction with a similar one for species A would be very difficult, and recourse is usually made to the steady-state approximation. This assumes that dC. /dt 0, or that the right-hand side of Eq. d is in a pseudo-equilibrium or stationary state. Justification for this was provided in the last example. [Pg.30]

at high concentrations (pressure), k2C4 kj (recall reaction 3 is presumably slow), and so, [Pg.30]

this theory indicates that simple decompositions that are first order at high pressures should change to second order at low pressures—many years of experimentation have shown this to be the case. Better quantitative agreement with the data is provided by more elaborate but similar theories—see Laidler [10] or Benson [27]. [Pg.31]

An important example of complex reactions are those involving/ree radicak in chain reactions. These reactions consist of three essential steps  [Pg.31]

Propagation, by reaction of the free radicals with reactants. [Pg.31]


R. C. Baetzold and D. J. Wilson, Classical unimolecular rate theory, II, Effect of the distribution of initial conditions,... [Pg.31]

Recent years have also witnessed exciting developments in the active control of unimolecular reactions [30,31]. Reactants can be prepared and their evolution interfered with on very short time scales, and coherent hght sources can be used to imprint information on molecular systems so as to produce more or less of specified products. Because a well-controlled unimolecular reaction is highly nonstatistical and presents an excellent example in which any statistical theory of the reaction dynamics would terribly fail, it is instmctive to comment on how to view the vast control possibihties, on the one hand, and various statistical theories of reaction rate, on the other hand. Note first that a controlled unimolecular reaction, most often subject to one or more external fields and manipulated within a very short time scale, undergoes nonequilibrium processes and is therefore not expected to be describable by any unimolecular reaction rate theory that assumes the existence of an equilibrium distribution of the internal energy of the molecule. Second, strong deviations Ifom statistical behavior in an uncontrolled unimolecular reaction can imply the existence of order in chaos and thus more possibilities for inexpensive active control of product formation. Third, most control scenarios rely on quantum interference effects that are neglected in classical reaction rate theory. Clearly, then, studies of controlled reaction dynamics and studies of statistical reaction rate theory complement each other. [Pg.8]

By choosing the initial conditions for an ensemble of trajectories to represent a quantum mechanical state, trajectories may be used to investigate state-specific dynamics and some of the early studies actually probed the possibility of state specificity in unimolecular decay [330]. However, an initial condition studied by many classical trajectory simulations, but not realized in any experiment is that of a micro-canonical ensemble [331] which assumes each state of the energized reactant is populated statistically with an equal probability. The classical dynamics of this ensemble is of fundamental interest, because RRKM unimolecular rate theory assumes this ensemble is maintained for the reactant [6,332] as it decomposes. As a result, RRKM theory rules-out the possibility of state-specific unimolecular decomposition. The relationship between the classical dynamics of a micro-canonical ensemble and RRKM theory is the first topic considered here. [Pg.206]

Experimental studies have had an enormous impact on the development of unimolecular rate theory. A set of classical thermal unimolecular dissociation reactions by Rabinovitch and co-workers [6-10], and chemical activation experiments by Rabinovitch and others [11-14], illustrated that the separability and symmetry of normal modes assumed by Slater theory is inconsistent with experiments. Eor many molecules and experimental conditions, RRKM theory is a substantially more accurate model for the unimolecular rate constant. Chemical activation experiments at high pressures [15,16] also provided information regarding the rate of vibrational energy flow within molecules. Experiments [17,18] for which molecules are vibrationally excited by overtone excitation of a local mode (e.g. C-H or O-H bond) gave results consistent with the chemical activation experiments and in overall good agreement with RRKM theory [19]. [Pg.398]

Theoretical chemistry is the discipline that uses quantum mechanics, classical mechanics, and statistical mechanics to explain the structures and dynamics of chemical systems and to correlate, understand, and predict their thermodynamic and kinetic properties. Modern theoretical chemistry may be roughly divided into the study of chemical structure and the study of chemical dynamics. The former includes studies of (1) electronic structure, potential energy surfaces, and force fields (2) vibrational-rotational motion and (3) equilibrium properties of condensed-phase systems and macromolecules. Chemical dynamics includes (1) bimolecular kinetics and the collision theory of reactions and energy transfer (2) unimolecular rate theory and metastable states and (3) condensed-phase and macromolecular aspects of dynamics. [Pg.1241]

A situation that arises from the intramolecular dynamics of A and completely distinct from apparent non-RRKM behaviour is intrinsic non-RRKM behaviour [9], By this, it is meant that A has a non-random P(t) even if the internal vibrational states of A are prepared randomly. This situation arises when transitions between individual molecular vibrational/rotational states are slower than transitions leading to products. As a result, the vibrational states do not have equal dissociation probabilities. In tenns of classical phase space dynamics, slow transitions between the states occur when the reactant phase space is metrically decomposable [13,14] on the timescale of the imimolecular reaction and there is at least one bottleneck [9] in the molecular phase space other than the one defining the transition state. An intrinsic non-RRKM molecule decays non-exponentially with a time-dependent unimolecular rate constant or exponentially with a rate constant different from that of RRKM theory. [Pg.1011]

The Marcus classical free energy of activation is AG , the adiabatic preexponential factor A may be taken from Eyring s Transition State Theory as (kg T /h), and Kel is a dimensionless transmission coefficient (0 < k l < 1) which includes the entire efiFect of electronic interactions between the donor and acceptor, and which becomes crucial at long range. With Kel set to unity the rate expression has only nuclear factors and in particular the inner sphere and outer sphere reorganization energies mentioned in the introduction are dominant parameters controlling AG and hence the rate. It is assumed here that the rate constant may be taken as a unimolecular rate constant, and if needed the associated bimolecular rate constant may be constructed by incorporation of diffusional processes as ... [Pg.54]

Second, we calculate the unimolecular rate constant at the internal energy E via the RRKM theory. We use Eq. (7.54), where the rotational energy is neglected and where the sum and density of vibrational states are evaluated classically. Thus at E = 184 kJ/mol we get... [Pg.195]

The unimolecular rate constant k(E) is described within the framework of RRKM theory. In the following, we neglect the rotational energy in HCN as well as in the activated complex. The classical barrier height is Ec = 1.51 eV. [Pg.208]

CLASSICAL, SEMICLASSICAL, AND QUANTUM MECHANICAL UNIMOLECULAR REACTION RATE THEORY... [Pg.3]

Rigorous Quantum Rate Theory Versus the Quantized ARRKM Theory A Semiclassical Approximation to the Rigorous Quantum Rate Theory Effective Hamiltonian Approach to Unimolecular Dissociation Wave Packet Dynamics Approach VII. Quantum Transport in Classically Chaotic Systems... [Pg.4]

As shown above, classical unimolecular reaction rate theory is based upon our knowledge of the qualitative nature of the classical dynamics. For example, it is essential to examine the rate of energy transport between different DOFs compared with the rate of crossing the intermolecular separatrix. This is also the case if one attempts to develop a quantum statistical theory of unimolecular reaction rate to replace exact quantum dynamics calculations that are usually too demanding, such as the quantum wave packet dynamics approach, the flux-flux autocorrelation formalism, and others. As such, understanding quantum dynamics in classically chaotic systems in general and quantization effects on chaotic transport in particular is extremely important. [Pg.128]

In this chapter we have reviewed the development of unimolecular reaction rate theory for systems that exhibit deterministic chaos. Our attention is focused on a number of classical statistical theories developed in our group. These theories, applicable to two- or three-dimensional systems, have predicted reaction rate constants that are in good agreement with experimental data. We have also introduced some quantum and semiclassical approaches to unimolecular reaction rate theory and presented some interesting results on the quantum-classical difference in energy transport in classically chaotic systems. There exist numerous other studies that are not considered in this chapter but are of general interest to unimolecular reaction rate theory. [Pg.137]

The classical unimolecular dynamics is ergodic for molecules like NO2 and D2CO, whose resonance states are highly mixed and unassignable. As described above, their unimolecular dynamics is identified as statistical state specific. The classical dynamics for these molecules are intrinsically RRKM and a microcanonical ensemble of phase space points decays exponentially in accord with Eq. (3). The correspondence found between statistical state specific quantum dynamics and quantum RRKM theory is that the average of the N resonance rate constants fe,) in an energy window E + AE approximates the quantum RRKM rate constant k E) [27,90]. Because of the state specificity of the resonance rates, the decomposition of an ensemble of the A resonances is non-exponential, i.e. [Pg.412]

The conclusion one reaches is that quantum RRKM theory is an incomplete model for unimolecular decomposition. It does not describe fluctuations in state-specific resonance rates, which arise from the nature of the couplings between the resonance states and the continuum. It also predicts steps in k E), which appear to be inconsistent with the actual quantum dynamics as determined from computational chemistry. However, for molecules whose classical unimolecular dynamics is ergodic and intrinsically RRKM and/or whose resonance rates are statistical state specific (see Section 15.2.4), the quantum RRKM k E) gives an accurate average rate constant for an energy interval E E + AE [47]. [Pg.415]


See other pages where Classical Unimolecular Rate Theory is mentioned: [Pg.30]    [Pg.30]    [Pg.397]    [Pg.400]    [Pg.312]    [Pg.3138]    [Pg.1018]    [Pg.1025]    [Pg.126]    [Pg.172]    [Pg.457]    [Pg.325]    [Pg.5]    [Pg.6]    [Pg.8]    [Pg.65]    [Pg.106]    [Pg.140]    [Pg.145]    [Pg.208]    [Pg.531]    [Pg.209]    [Pg.153]    [Pg.172]    [Pg.399]    [Pg.414]   


SEARCH



Classical theories

Classical unimolecular reaction rate theory

Rate Theory

Rate theory, unimolecular

Unimolecular theories

© 2024 chempedia.info