Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Citric acid cycle, and amino acids

The glutamate family of transaminases is very important because the ketoacid corresponding to glutamate is a-ketoglutarate, one of the citric acid cycle intermediates. This provides a link between the citric acid cycle and amino acid metabolism. These transaminases provide amino groups for amino acid synthesis and collect amino groups during catabolism of amino acids. [Pg.840]

Porphyrins are a small but important group of secondary plant substances. We dealt with their structure when we discussed the chlorophylls. The biosynthesis of the porphyrins is interlinked with the citric acid cycle and amino acid metabolism. (Fig. 132). The precursor succinyl CoA is derived from the citric acid cycle and the precursor glycine from amino acid metabolism. The two are combined to give an unstable intermediate which loses CO2 to form 8-aminolevulinic acid. Two molecules of 8-aminolevulinic acid are combined to yield porphobilinogen, a pyrrole system, which is the building block of the porphyrins. Four such porphobilinogen molecules become linked in a series of steps to form the porphyrin system. The first porphyrin to appear in the course of biosynthesis is uroporphyrinogen III. Of the subsequent intermediates protoporphyrin IX is worthy of mention. This is because introduction of Mg " on the one hand leads to Mg-protoporphyrin IX and then further to the chlorophylls, whereas introduction of Fe++ on the other yields Fe-... [Pg.160]

Amino Acids Are Made from Intermediates of the Citric Add Cycle and Other Major Pathways... [Pg.705]

OAA is an intermediate in several important pathways, including gluconeogenesis, citric acid cycle, glyoxylate cycle, urea cycle, and amino acid metabolism (see here). [Pg.134]

Physiological Role of Citric Acid. Citric acid occurs ia the terminal oxidative metabolic system of virtually all organisms. This oxidative metabohc system (Fig. 2), variously called the Krebs cycle (for its discoverer, H. A. Krebs), the tricarboxyUc acid cycle, or the citric acid cycle, is a metaboHc cycle involving the conversion of carbohydrates, fats, or proteins to carbon dioxide and water. This cycle releases energy necessary for an organism s growth, movement, luminescence, chemosynthesis, and reproduction. The cycle also provides the carbon-containing materials from which cells synthesize amino acids and fats. Many yeasts, molds, and bacteria conduct the citric acid cycle, and can be selected for thek abiUty to maximize citric acid production in the process. This is the basis for the efficient commercial fermentation processes used today to produce citric acid. [Pg.182]

The catabolism of proteins is much more complex than that of fats and carbohydrates because each of the 20 amino acids is degraded through its own unique pathway. The general idea, however, is that the amino nitrogen atom is removed and the substance that remains is converted into a compound that enters the citric acid cycle. [Pg.1165]

The nature of the diet sets the basic pattern of metabohsm. There is a need to process the products of digestion of dietary carbohydrate, lipid, and protein. These are mainly glucose, fatty acids and glycerol, and amino acids, respectively. In ruminants (and to a lesser extent in other herbivores), dietary cellulose is fermented by symbiotic microorganisms to short-chain fatty acids (acetic, propionic, butyric), and metabohsm in these animals is adapted to use these fatty acids as major substrates. All the products of digestion are metabohzed to a common product, acetyl-CoA, which is then oxidized by the citric acid cycle (Figure 15-1). [Pg.122]

The amino acids are required for protein synthesis. Some must be supplied in the diet (the essential amino acids) since they cannot be synthesized in the body. The remainder are nonessential amino acids that are supplied in the diet but can be formed from metabolic intermediates by transamination, using the amino nitrogen from other amino acids. After deamination, amino nitrogen is excreted as urea, and the carbon skeletons that remain after transamination (1) are oxidized to CO2 via the citric acid cycle, (2) form glucose (gluconeogenesis), or (3) form ketone bodies. [Pg.124]

The central role of the mitochondrion is immediately apparent, since it acts as the focus of carbohydrate, hpid, and amino acid metabohsm. It contains the enzymes of the citric acid cycle, P-oxidation of fatty acids, and ketogenesis, as well as the respiratory chain and ATP synthase. [Pg.126]

The citric acid cycle is the final common pathway for the aerobic oxidation of carbohydrate, lipid, and protein because glucose, fatty acids, and most amino acids are metabolized to acetyl-CoA or intermediates of the cycle. It also has a central role in gluconeogenesis, lipogenesis, and interconversion of amino acids. Many of these processes occur in most tissues, but the hver is the only tissue in which all occur to a significant extent. The repercussions are therefore profound when, for example, large numbers of hepatic cells are damaged as in acute hepatitis or replaced by connective tissue (as in cirrhosis). Very few, if any, genetic abnormalities of citric acid cycle enzymes have been reported such ab-normahties would be incompatible with life or normal development. [Pg.130]

The citric acid cycle is not only a pathway for oxidation of two-carbon units—it is also a major pathway for interconversion of metabolites arising from transamination and deamination of amino acids. It also provides the substtates for amino acid synthesis by transamination, as well as for gluconeogenesis and fatty acid synthesis. Because it fimctions in both oxidative and synthetic processes, it is amphibolic (Figure 16—4). [Pg.133]

Aminotransferase (transaminase) reactions form pymvate from alanine, oxaloacetate from aspartate, and a-ketoglutarate from glutamate. Because these reactions are reversible, the cycle also serves as a source of carbon skeletons for the synthesis of these amino acids. Other amino acids contribute to gluconeogenesis because their carbon skeletons give rise to citric acid cycle... [Pg.133]

The citric acid cycle is amphibolic, since in addition to oxidation it is important in the provision of carbon skeletons for gluconeogenesis, fatty acid synthesis, and interconversion of amino acids. [Pg.135]

Humans can synthesize 12 of the 20 common amino acids from the amphiboHc intermediates of glycolysis and of the citric acid cycle (Table 28-1). While nutritionally nonessenrial, these 12 amino acids are not nonessential. AH 20 amino acids are biologically essential. Of the 12 nutritionally nonessential amino acids, nine are formed from amphibolic intermediates and three (cysteine, tyrosine and hydroxylysine) from nutritionally essential amino acids. Identification of the twelve amino acids that humans can synthesize rested primarily on data derived from feeding diets in which purified amino acids replaced protein. This chapter considers only the biosynthesis of the twelve amino acids that are synthesized in human tissues, not the other eight that are synthesized by plants. [Pg.237]

These include the mitochondrial respiratory chain, key enzymes in fatty acid and amino acid oxidation, and the citric acid cycle. Reoxidation of the reduced flavin in oxygenases and mixed-function oxidases proceeds by way of formation of the flavin radical and flavin hydroperoxide, with the intermediate generation of superoxide and perhydroxyl radicals and hydrogen peroxide. Because of this, flavin oxidases make a significant contribution to the total oxidant stress of the body. [Pg.490]

As far as I can judge, all primitive cells had a basic reducing cell metabolism glycolysis, a citric acid cycle or its reverse, amino acid and base synthesis, while all maintained high K+, low Na+ and Cl-, moderate Mg2+, and very low Ca2+ (see Figure 2.3) by input and output pumps. Chemical... [Pg.23]

Althoi alanine is the major gluconeogenic amino acid, 18 of the 20 (all but leucine and lysine) are also gluconeogenic. Most of these are converted by individual pathways to citric acid cycle intermediates, then to malate, following the same path from there to glucose. [Pg.198]

Both muscle and liver have aminotransferases, which, unlike deaminases, do not release the amino groups as free ammonium ion. This class of enzymes transfers the amino group from one carbon skeleton (an amino acid) to another (usually a-ketoglutarate, a citric acid cycle intermediate). Pyridoxal phosphate (PLP) derived from vitamin is required to mediate the transfer. [Pg.243]

This enzyme is found in many tissues, where it catalyzes the reversible oxidative deamination of the amino acid glutamate. It produces the citric acid cycle intermediate a-ketoglutarate, which serves as an entry point to the cycle for a group of glucogenic amino adds. Its role in urea synthesis and nitrogen removal is stiU controversial, but has heen induded in Figure 1-17-1 and Table 1-17-1. [Pg.244]

Pyridoxal phosphate is a required coenzyme for many enzyme-catalyzed reactions. Most of these reactions are associated with the metabolism of amino acids, including the decarboxylation reactions involved in the synthesis of the neurotransmitters dopamine and serotonin. In addition, pyridoxal phosphate is required for a key step in the synthesis of porphyrins, including the heme group that is an essential player in the transport of molecular oxygen by hemoglobin. Finally, pyridoxal phosphate-dependent reactions link amino acid metabolism to the citric acid cycle (chapter 16). [Pg.203]

The citric acid cycle is at the heart of aerobic cellular metabolism, or respiration. This is true of both prokaryotic and eukaryotic organisms, of plants and animals, of organisms large and small. Here is the main point. On the one hand, the small molecule products of catabolism of carbohydrates, lipids, and amino acids feed into the citric acid cycle. There they are converted to the ultimate end products of catabolism, carbon dioxide and water. On the other hand, the molecules of the citric acid cycle are intermediates for carbohydrate, lipid, and amino acid synthesis. Thus, the citric acid cycle is said to be amphibolic, involved in both catabolism and anabolism. It is a sink for the products of degradation of carbohydrates, lipids, and proteins and a source of building blocks for them as well. [Pg.230]

Vinblastine suppresses cell growth during metaphase, affects amino acid metabolism, in particular at the level of including glutamine acid into the citric acid cycle and preventing it from transformation into urea, and it also inhibits protein and nucleic acid synthesis. [Pg.405]

It interferes with metabolic pathways of amino acids leading from glutamic acid to the citric acid (Krebs) cycle and urea. [Pg.376]

Citric Acid Cycle Intermediates and Many Amino Acids Are Glucogenic... [Pg.548]

Note All these amino acids are precursors of blood glucose or liver glycogen, because they can be converted to pyruvate or citric acid cycle intermediates. Of the 20 common amino acids, only leucine and lysine are unable to furnish carbon for net glucose synthesis. These amino acids are also ketogenic (see Fig. 18-21). [Pg.549]


See other pages where Citric acid cycle, and amino acids is mentioned: [Pg.299]    [Pg.588]    [Pg.231]    [Pg.299]    [Pg.588]    [Pg.231]    [Pg.20]    [Pg.101]    [Pg.523]    [Pg.88]    [Pg.574]    [Pg.1171]    [Pg.123]    [Pg.153]    [Pg.155]    [Pg.160]    [Pg.231]    [Pg.236]    [Pg.270]    [Pg.226]    [Pg.148]    [Pg.230]    [Pg.231]    [Pg.75]    [Pg.46]    [Pg.548]    [Pg.602]   
See also in sourсe #XX -- [ Pg.49 , Pg.50 , Pg.51 , Pg.52 , Pg.53 ]




SEARCH



Citric acid cycle and

Citric cycle

© 2024 chempedia.info