Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Circulating bed reactors

Reactor types intermediate between fluid bed and entrained flow also exist, like internally circulating bed reactors with an internal riser section and an external annular section of a fluid/moving-bed type. [Pg.381]

Fig. 10.6. A typical catalytic circulating bed reactor design. This CFB loop consists of a riser, gas-solid cyclone separators, and a downcomer. In this particular case the downcomer consists of a spend solid regenerator. Reprinted from [135] with permission from Elsevier. Fig. 10.6. A typical catalytic circulating bed reactor design. This CFB loop consists of a riser, gas-solid cyclone separators, and a downcomer. In this particular case the downcomer consists of a spend solid regenerator. Reprinted from [135] with permission from Elsevier.
A large number of processes and reactors have been developed for the thermal conversion of plastic and rubber wastes stirred tanks, rotary kilns, fluidized beds, circulating bed reactors, screw extruders, etc. Many of the studies carried out in recent years have been based on sand fluidized or circulating bed reactors. Likewise, several works have recently appeared on plastic degradation in the presence of solvents. [Pg.123]

Basell has recently developed the Spherizone process using the circulating-bed reactor, already depicted in Figure 2.36. Other than the different reactor configuration, the Spherizone process is essentially the same as the Spheripol process. [Pg.110]

The MTO process employs a turbulent fluid-bed reactor system and typical conversions exceed 99.9%. The coked catalyst is continuously withdrawn from the reactor and burned in a regenerator. Coke yield and catalyst circulation are an order of magnitude lower than in fluid catalytic cracking (FCC). The MTO process was first scaled up in a 0.64 m /d (4 bbl/d) pilot plant and a successfiil 15.9 m /d (100 bbl/d) demonstration plant was operated in Germany with U.S. and German government support. [Pg.85]

Some reactors are designed specifically to withstand an explosion (14). The multitube fixed-bed reactors typically have ca 2.5-cm inside-diameter tubes, and heat from the highly exothermic oxidation reaction is removed by a circulating molten salt. This salt is a eutectic mixture of sodium and potassium nitrate and nitrite. Care must be taken in reactor design and operation because fires can result if the salt comes in contact with organic materials at the reactor operating temperature (15). Reactors containing over 20,000 tubes with a 45,000-ton annual production capacity have been constmcted. [Pg.483]

Approximately 45% of the world s phthaUc anhydride production is by partial oxidation of 0-xylene or naphthalene ia tubular fixed-bed reactors. Approximately 15,000 tubes of 25-mm dia would be used ia a 31,000 t/yr reactor. Nitrate salts at 375—410°C are circulated from steam generators to maintain reaction temperatures. The resultant steam can be used for gas compression and distillation as one step ia reduciag process energy requirements (100). [Pg.525]

The principal advance ia technology for SASOL I relative to the German Fischer-Tropsch plants was the development of a fluidized-bed reactor/regenerator system designed by M. W. Kellogg for the synthesis reaction. The reactor consists of an entrained-flow reactor ia series with a fluidized-bed regenerator (Fig. 14). Each fluidized-bed reactor processes 80,000 m /h of feed at a temperature of 320 to 330°C and 2.2 MPa (22 atm), and produces approximately 300 m (2000 barrels) per day of Hquid hydrocarbon product with a catalyst circulation rate of over 6000 t/h (49). [Pg.291]

SASOL has pursued the development of alternative reactors to overcome specific operational difficulties encountered with the fixed-bed and entrained-bed reactors. After several years of attempts to overcome the high catalyst circulation rates and consequent abrasion in the Synthol reactors, a bubbling fluidized-bed reactor 1 m (3.3 ft) in diameter was constructed in 1983. Following successflil testing, SASOL designed and construc ted a full-scale commercial reac tor 5 m (16.4 ft) in diameter. The reactor was successfully commissioned in 1989 and remains in operation. [Pg.2377]

A new process for the partial oxidation of n-butane to maleic anhydride was developed by DuPont. The important feature of this process is the use of a circulating fluidized bed-reactor. Solids flux in the rizer-reactor is high and the superficial gas velocities are also high, which encounters short residence times usually in seconds. The developed catalyst for this process is based on vanadium phosphorous oxides... [Pg.176]

Figure 11.10(b) can be modeled as a piston flow reactor with recycle. The fluid mechanics of spouting have been examined in detail so that model variables such as pressure drop, gas recycle rate, and solids circulation rate can be estimated. Spouted-bed reactors use relatively large particles. Particles of 1 mm (1000 pm) are typical, compared with 40-100 pm for most fluidizable catalysts. [Pg.418]

Hydrodynamics, Heat and Mass Transfer in Inverse and Circulating Three-Phase Fluidized-Bed Reactors for WasteWater Treatment... [Pg.101]

Recent research development of hydrodynamics and heat and mass transfer in inverse and circulating three-phase fluidized beds for waste water treatment is summarized. The three-phase (gas-liquid-solid) fluidized bed can be utilized for catalytic and photo-catalytic gas-liquid reactions such as chemical, biochemical, biofilm and electrode reactions. For the more effective treatment of wastewater, recently, new processing modes such as the inverse and circulation fluidization have been developed and adopted to circumvent the conventional three-phase fluidized bed reactors [1-6]. [Pg.101]

To provide the pr equisite knowledge for designing the three-phase fluidized-bed reactors with new modes, the hydrodynamics such as phase holdup, mixing and bubble properties and heat and mass transfer characteristics in the reactors have to be determined. Thus, in this study, the hydrodynamics and heat and mass transfer characteristics in the inverse and circulating three-phase fluidized-bed reactors for wastewater treatment in the present and previous studies have been summarized. Correlations for the hydrod3aiamics as well as mass and heat transfer coefficients are proposed. The areas wherein future research should be undertaken to improve... [Pg.101]

Direct mass production technique of dimethyl ether from synthesis gas in a circulating slurry bed reactor... [Pg.489]

Fig. 1. Comparison between LP201 and the commercial catalysts in a slurry reactor 2.2 Circulating slurry bed reactor... Fig. 1. Comparison between LP201 and the commercial catalysts in a slurry reactor 2.2 Circulating slurry bed reactor...
For the sake of developing commercial reactors with high performance for direct synthesis of DME process, a novel circulating slurry bed reactor was developed. The reactor consists of a riser, down-comer, gas-liquid separator, gas distributor and specially designed internals for mass transfer and heat removal intensification [3], Due to density difference between the riser and down-comer, the slurry phase is eirculated in the reactor. A fairly good flow structure can be obtained and the heat and mass transfer can be intensified even at a relatively low superficial gas velocity. [Pg.490]

In the above three processes, the catalysts are all composed of Cu-based methanol synthesis catalyst and methanol dehydration catalyst of AI2O3. The reactors used by JFE and APCI are slurry bubble column, while a circulating slurry bed reactor was used in the pilot plant in Chongqing. It can be foxmd from Table 1 that conversion of CO obtained in the circulating slurry bed reactor developed by Tsinghua University is obvious higher and the operation conditions are milder than the others. [Pg.492]

Fig. 4. Effect of solid circulation rate on CO2 removal in a fast fluidized-bed reactor... Fig. 4. Effect of solid circulation rate on CO2 removal in a fast fluidized-bed reactor...
The reactivities of pure NaHCOa solid. Sorb NHR, NHR5, and NX30 sorbents were examined in a fast fluidized bed reactor. The CO2 removal of the pure NaHCOa solid increased from 3 % to 25 % when the variables were altered. Removal increased as gas velocity was decreased, as the carbonation temperature was decreased, or as the solid circulation rate was increased. The CO2 removal of Sorb NHR and NHR5 was initially maintained at 100 % for a short period of time but quickly dropped to a 10 to 20 % removal. However, the Sorb NX30 sorbent showed fast kinetics in the fast fluidized reactor, capturing all of the 10 % of the CO2 in the flue gas within 3 seconds in the fast fluidized reactor. [Pg.504]


See other pages where Circulating bed reactors is mentioned: [Pg.61]    [Pg.867]    [Pg.183]    [Pg.86]    [Pg.105]    [Pg.226]    [Pg.263]    [Pg.103]    [Pg.103]    [Pg.281]    [Pg.1005]    [Pg.61]    [Pg.867]    [Pg.183]    [Pg.86]    [Pg.105]    [Pg.226]    [Pg.263]    [Pg.103]    [Pg.103]    [Pg.281]    [Pg.1005]    [Pg.75]    [Pg.431]    [Pg.72]    [Pg.223]    [Pg.461]    [Pg.1567]    [Pg.164]    [Pg.371]    [Pg.417]    [Pg.14]    [Pg.101]    [Pg.104]    [Pg.491]    [Pg.491]    [Pg.492]    [Pg.502]   
See also in sourсe #XX -- [ Pg.226 ]




SEARCH



Circulating bed

Circulating reactor

© 2024 chempedia.info