Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cinnamic acid, preparation reactions

Cinnamic acid undergoes reactions that are typical of an aromatic carboxyhc acid. Using standard methodology, simple esters are easily prepared and salts are formed upon neutrali2ation with the appropriate base. Hydrogenation of cinnamic acid under mild conditions leads to 3-phenylpropanoic acid [501-52-0] whereas under forcing conditions, such as under high pressure in presence of a nickel catalyst, complete saturation to 3-cyclohexylpropanoic acid [701-97-3] is readily accompHshed (8). [Pg.173]

Cinnamic acid is usually prepared by Perkin s reaction, benzaldehyde being heated with sodium acetate in the presence of acetic anhydride. It is probable that the benzaldehyde and the acetic anhydride combine under the catalytic action of the sodium acetate, and the product then readily loses water to give mono-benzylidene acetic anhydride (. ). The latter, when subsequently... [Pg.236]

Reactions. Heating an aqueous solution of malonic acid above 70°C results in its decomposition to acetic acid and carbon dioxide. Malonic acid is a useful tool for synthesizing a-unsaturated carboxyUc acids because of its abiUty to undergo decarboxylation and condensation with aldehydes or ketones at the methylene group. Cinnamic acids are formed from the reaction of malonic acid and benzaldehyde derivatives (1). If aUphatic aldehydes are used acryhc acids result (2). Similarly this facile decarboxylation combined with the condensation with an activated double bond yields a-substituted acetic acid derivatives. For example, 4-thiazohdine acetic acids (2) are readily prepared from 2,5-dihydro-l,3-thiazoles (3). A further feature of malonic acid is that it does not form an anhydride when heated with phosphorous pentoxide [1314-56-3] but rather carbon suboxide [504-64-3] [0=C=C=0], a toxic gas that reacts with water to reform malonic acid. [Pg.465]

The cinnamic acid is readily prepared by heating benzaldehyde with acetic anhydride and sodium acetate (the Perkin Reaction) (Figure 16.2). [Pg.427]

Intermolecular photocycloadditions of alkenes can be carried out by photosensitization with mercury or directly with short-wavelength light.179 Relatively little preparative use has been made of this reaction for simple alkenes. Dienes can be photosensitized using benzophenone, butane-2,3-dione, and acetophenone.180 The photodimerization of derivatives of cinnamic acid was among the earliest photochemical reactions to be studied.181 Good yields of dimers are obtained when irradiation is carried out in the crystalline state. In solution, cis-trans isomerization is the dominant reaction. [Pg.544]

The method constitutes a simple preparation of ethanol-in-soluble cinnamic acids, of a high degree of purity when compared with the Perkin reaction 6 or the usual procedure for the Doebner reaction,6 which uses a large excess of pyridine. A useful modification of this reaction is to warm the reactants on a steam plate in the absence of alcohol.7 8... [Pg.92]

Meerwein reaction, preparation of p-acety1-a-bromohydro-cinnamic acid, 51, 1 Mercuric acetate, 54, 71 reaction with cyclooctatetra- / ene, 50, 24... [Pg.61]

This procedure has been used to prepare a variety of substituted a-bromohydrocinnamic acids 2 p-acetyl-a-bromohydro-cinnamic acid was prepared for the first time by this method. The method illustrates a typical application of the Meerwein reaction for the arylation of unsaturated substrates.3 In this reaction a catalytic amount of a copper(I) salt is used to reduce an aryl diazonium salt forming an aryl radical and a copper(II) halide. Addition of the aryl radical to an unsaturated substrate forms an alkyl radical that is reoxidized by the copper(II) halide present forming an alkyl halide and regenerating the copper(I) salt catalyst. In this preparation, the product, an a-bromo acid, is formed in an acidic reaction mixture and dehydro-halogenation does not occur. However, dehydrohalogenation... [Pg.86]

A somewhat different route is used to prepare an analogue that bears additional oxygen. The sequence, in this case, starts by base-catalyzed formylation of the hydro-cinnamic acid derivative (40-1) with ethyl formate. Condensation of the product (40-2) with guanidine in this case leads to a pyrimidone (40-3), with the cyclization involving an ester-amide interchange between guanidine and the ester. Reaction of... [Pg.346]

Other preparations of 2-iminothiazolidin-4-ones which are discussed in the review by Brown139 utilize the reactions of thiourea with a-hydroxy acids,146 ethyl diazoacetate,73 glycidic esters,74,147 cinnamic acid,148 unsaturated diacids (fumaric, maleic, and citraconic) or their esters or imides,149-152 and propiolic esters.153,154 There has been considerable controversy in the literature surrounding the propiolic ester synthesis since many workers have proposed that the products are 1,3-thiazines (see Section IV, B, 1). The pertinent papers in this controversy have been summarized by Cain and Warrener.155 Nagase158 has recently settled the argument in favor of the 2-iminothiazolidin-4-... [Pg.118]

Whether an inhibitor acts in a competitive or noncompetitive manner is deduced from a Lineweaver-Burk or direct linear plot using varying concentrations of inhibitor and substrate. In separate assays, two substances will be added to the dopa-tyrosinase reaction mixture, and the effect on enzyme activity will be quantified. The structures of the potential inhibitors, cinnamic acid and thiourea, are shown in Figure E5.9. The inhibition assays must be done immediately following the KM studies. To measure inhibition, reaction rates both with and without inhibitor must be used and the tyrosinase activity must not be significantly different. If it is necessary to do the inhibition studies later, the Ku assay for L-dopa must be repeated with freshly prepared tyrosinase solution. [Pg.295]

Reaction XXXIII. (e) Condensation of the Dichlorides of Aromatic Aldehydes with the Sodium Salts of certain Acids. (B., 15, 969.)—This is a modification of the previous reaction used commercially to prepare cinnamic acid, by heating scdium acetate with benzal chloride. The latter is much cheaper than benzaldehyde. [Pg.115]

In 2006, Ukai et al. proposed an interesting alternative with a rhodium(I)-catalyzed carboxylation of aryl- and alkenylboronic esters proceeding under mild conditions, and leaving ancillary reactive functional groups such as carbonyl- and cyano unreacted [51] (Scheme 5.13). Considering that organoboronic esters are easily available, and that various functional groups are tolerated, this reaction appeared to be particularly useful for the preparation of functionalized arylcarboxylic acids, such as benzoic and cinnamic acid derivatives. [Pg.107]

Compound 85 was dehydrogenated at 300° over palladium black under reduced pressure to a pyridine derivative 96 which was independently synthesized by the following route. Anisaldehyde (86) was treated with iodine monochloride in acetic acid to give the 3-iodo derivative 87. The Ullmann reaction of 87 in the presence of copper bronze afforded biphenyldialdehyde (88). The Knoevenagel condensation with malonic acid yielded the unsaturated diacid 91. The methyl ester (92) was also prepared alternatively by a condensation of 3-iodoanisaldehyde with malonic acid to give the iodo-cinnamic acid (89), followed by the Ullmann reaction of its methyl ester (90). The cinnamic diester was catalytically hydrogenated and reduced with lithium aluminium hydride to the diol 94. Reaction with phosphoryl chloride afforded an amorphous dichloro derivative (95) which was condensed with 2,6-lutidine in liquid ammonia in the presence of potassium amide to yield pyridine the derivative 96 in 27% yield (53). [Pg.291]

Early reported applications of this technique were the preparation of a 24-member peptide library [83], of a 125-member tripeptide-substituted cinnamic acid library tested for inhibition of tyrosine phosphatase PTP1B [83], of a 64-member peptide-like library [83] and of libraries based on a natural product, epothilone, using also new polystyrene grafted solid supports [84], Other applications, ranging from l,5-benzodiazepin-2-one library synthesis [85] to chalcone library synthesis [86], were also recently reported. Commercialization of the basic components for this technique [87] (reaction supports and vessels, tags, software, sorters, reaction stations, and so on) will ensure its quick and effective use in combinatorial chemistry and also the implementation of new technical features and possibilities for more complex and demanding applications in future. [Pg.225]

Fig. 10.48. A Knoevenagel reaction with a twist preparation of cinnamic acid. Fig. 10.48. A Knoevenagel reaction with a twist preparation of cinnamic acid.
Examples of the solvent-dependent competition between nucleophilic substitution and / -elimination reactions [i.e. SnI versus Ei and Sn2 versus E2) have already been given in Section 5.3.1 [cf. Table 5-7). A nice example of a dichotomic y9-elimination reaction, which can proceed via an Ei or E2 mechanism depending on the solvent used, is shown in Eq. (5-140a) cf. also Eqs. (5-20) and (5-21) in Section 5.3.1. The thermolysis of the potassium salt of racemic 2,3-dibromo-l-phenylpropanoic acid (A), prepared by bromine addition to ( )-cinnamic acid, yields, in polar solvents [e.g. water), apart from carbon dioxide and potassium bromide, the ( )-isomer of l-bromo-2-phenylethene, while in solvents with low or intermediate polarity e.g. butanone) it yields the (Z)-isomer [851]. [Pg.279]


See other pages where Cinnamic acid, preparation reactions is mentioned: [Pg.116]    [Pg.41]    [Pg.333]    [Pg.73]    [Pg.202]    [Pg.153]    [Pg.884]    [Pg.87]    [Pg.43]    [Pg.234]    [Pg.687]    [Pg.172]    [Pg.514]    [Pg.488]    [Pg.431]    [Pg.41]    [Pg.214]    [Pg.116]    [Pg.115]    [Pg.2225]    [Pg.705]    [Pg.321]    [Pg.220]    [Pg.116]    [Pg.705]    [Pg.138]    [Pg.179]   
See also in sourсe #XX -- [ Pg.347 , Pg.353 ]




SEARCH



Acids cinnamic acid

Cinnamate

Cinnamates

Cinnamic 4-

Cinnamic acid

Cinnamic acid, preparation

Cinnamic acid/cinnamate

Cinnamics

Perkin reaction cinnamic acid preparation

© 2024 chempedia.info