Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromium, oxidation

Veliah S, Xiang K H, Pandey R, Redo J M and Newsam J M 1998 Density functional study of chromium oxide dusters structure, bonding, vibrations, and stability Phys. Rev. B 102 1126... [Pg.2407]

Note. Both tetramethylene glycol (1 4-butanediol) and hexamethylene glycol (1 6 hexaiiediol) may be prepared more conveniently by copper-chromium oxide reduction (Section VI,6) or, for small quantities, by reduction with lithium aluminium hydride (see Section VI,10). [Pg.251]

By passing the alcohol vapour over a copper - chromium oxide catalyst deposit on pumice and heated to 330°, for example ... [Pg.318]

It difiers from the cof per. chromium oxide catalyst described in Section VI,6 in that it has not been extracted with 10 per cent, acetic acid—a process which presumably removes some copper oxide. [Pg.321]

Trimethylene dibromide (Section 111,35) is easily prepared from commercial trimethj lene glycol, whilst hexamethylene dibromide (1 O dibromohexane) is obtained by the red P - Br reaction upon the glycol 1 6-hexanediol is prepared by the reduction of diethyl adipate (sodium and alcohol lithium aluminium hydride or copper-chromium oxide and hydrogen under pressure). Penta-methylene dibromide (1 5-dibromopentane) is readily produced by the red P-Brj method from the commercially available 1 5 pentanediol or tetra-hydropyran (Section 111,37). Pentamethylene dibromide is also formed by the action of phosphorus pentabromide upon benzoyl piperidine (I) (from benzoyl chloride and piperidine) ... [Pg.489]

The product is the isomer with the two phenyl groups cis to each other, since decarboxylation with quinoline-copper chromium oxide at 210-220° yields cis-stilbene. [Pg.713]

Hydrogenations with coppcr-chromium oxide catalyst are usually carried out in the liquid phase in stainless steel autoclaves at pressures up to 5000-6000 lb. per square inch. A solvent is not usually necessary for hydrogenation of an ester at 250° since the original ester and the alcohol or glycol produced serve as the reaction medium. However, when dealing with small quantities and also at temperatures below 200° a solvent is desirable this may be methyl alcohol, ethyi alcohol, dioxan or methylcyc/ohexane. [Pg.872]

This preparation illustrates the use of the copper-chromium oxide catalyst in the r uotion of esters of dibasic acids to glycols ... [Pg.873]

Plot of pMp° - p) against p/p° (r is expressed in cm (stp)). (1) Unpromoted Fe catalyst (2) AljOj-promoted Fe catalyst (3) AI2O3-KjO-promoted Fe catalyst (4) fused copper catalyst (5) chromium oxide gel (6) silica gel. (Courtesy Brunauer, Emmett and Teller.)... [Pg.50]

The equilibrium is more favorable to acetone at higher temperatures. At 325°C 97% conversion is theoretically possible. The kinetics of the reaction has been studied (23). A large number of catalysts have been investigated, including copper, silver, platinum, and palladium metals, as well as sulfides of transition metals of groups 4, 5, and 6 of the periodic table. These catalysts are made with inert supports and are used at 400—600°C (24). Lower temperature reactions (315—482°C) have been successhiUy conducted using 2inc oxide-zirconium oxide combinations (25), and combinations of copper-chromium oxide and of copper and silicon dioxide (26). [Pg.96]

C and 19,600 kPa (2800 psi). The catalyst is a complex aluminum—ca dmium —chromium oxide that has high activity and exceptionally long life. The process is claimed to give a conversion of ester to alcohol of about 99% retaining essentially all of the original double bonds. [Pg.449]

Aromatic rings in lignin may be converted to cyclohexanol derivatives by catalytic hydrogenation at high temperatures (250°C) and pressures (20—35 MPa (200—350 atm)) using copper—chromium oxide as the catalyst (11). Similar reduction of aromatic to saturated rings has been achieved using sodium in hquid ammonia as reductants (12). [Pg.139]

Hydrodynamic principles for gas bearings are similar to those involved with Hquid lubricants except that gas compressibility usually is a significant factor (8,69). With gas employed as a lubricant at high speeds, start—stop wear is minimized by selection of wear-resistant materials for the journal and bearing. This may involve hard coatings such as tungsten carbide or chromium oxide flame plate, or soHd lubricants, eg, PTFE and M0S2. [Pg.252]

There is also a two-step process of chromizing foUowed by aluminizing. Above 900°C the chromizing begins to rediffuse and the protective oxide changes to Al O from Cr202. Aluminum oxide is less volatile than chromium oxide and better for high temperature oxidation resistance above 1000°C. [Pg.136]

Stainless steel develops a passive protective layer (<5-nm thick) of chromium oxide [1118-57-3] which must be maintained or permitted to rebuild after it is removed by product flow or cleaning. The passive layer may be removed by electric current flow across the surface as a result of dissinulat metals being in contact. The creation of an electrolytic cell with subsequent current flow and corrosion has to be avoided in constmction. Corrosion may occur in welds, between dissimilar materials, at points under stress, and in places where the passive layer is removed it may be caused by food material, residues, cleaning solutions, and bmshes on material surfaces (see CORROSION AND CORROSION CONTROL). [Pg.361]

Second, in the early 1950s, Hogan and Bank at Phillips Petroleum Company, discovered (3,4) that ethylene could be catalyticaHy polymerized into a sohd plastic under more moderate conditions at a pressure of 3—4 MPa (435—580 psi) and temperature of 70—100°C, with a catalyst containing chromium oxide supported on siUca (Phillips catalysts). PE resins prepared with these catalysts are linear, highly crystalline polymers of a much higher density of 0.960—0.970 g/cnr (as opposed to 0.920—0.930 g/cnf for LDPE). These resins, or HDPE, are currentiy produced on a large scale, (see Olefin polymers, HIGH DENSITY POLYETHYLENE). [Pg.367]

HDPE resias are produced ia industry with several classes of catalysts, ie, catalysts based on chromium oxides (Phillips), catalysts utilising organochromium compounds, catalysts based on titanium or vanadium compounds (Ziegler), and metallocene catalysts (33—35). A large number of additional catalysts have been developed by utilising transition metals such as scandium, cobalt, nickel, niobium, molybdenum, tungsten, palladium, rhodium, mthenium, lanthanides, and actinides (33—35) none of these, however, are commercially significant. [Pg.383]

A wide variety of chromium oxide and Ziegler catalysts was developed for this process (61,62). Chromium-based catalysts produce HDPE with a relatively broad MWD other catalysts provide HDPE resins with low molecular weights (high melt indexes) and resins with a narrower MWD (63,64). [Pg.384]

Processes for HDPE with Broad MWD. Synthesis of HDPE with a relatively high molecular weight and a very broad MWD (broader than that of HDPE prepared with chromium oxide catalysts) can be achieved by two separate approaches. The first is to use mixed catalysts containing two types of active centers with widely different properties (50—55) the second is to employ two or more polymerization reactors in a series. In the second approach, polymerization conditions in each reactor are set drastically differendy in order to produce, within each polymer particle, an essential mixture of macromolecules with vasdy different molecular weights. Special plants, both slurry and gas-phase, can produce such resins (74,91—94). [Pg.387]


See other pages where Chromium, oxidation is mentioned: [Pg.99]    [Pg.377]    [Pg.260]    [Pg.321]    [Pg.872]    [Pg.872]    [Pg.873]    [Pg.920]    [Pg.161]    [Pg.99]    [Pg.211]    [Pg.211]    [Pg.211]    [Pg.211]    [Pg.211]    [Pg.211]    [Pg.249]    [Pg.486]    [Pg.13]    [Pg.164]    [Pg.122]    [Pg.501]    [Pg.139]    [Pg.275]    [Pg.361]    [Pg.6]    [Pg.383]    [Pg.383]    [Pg.385]   
See also in sourсe #XX -- [ Pg.223 ]

See also in sourсe #XX -- [ Pg.138 ]

See also in sourсe #XX -- [ Pg.223 ]

See also in sourсe #XX -- [ Pg.122 ]

See also in sourсe #XX -- [ Pg.269 , Pg.270 ]

See also in sourсe #XX -- [ Pg.94 , Pg.137 ]

See also in sourсe #XX -- [ Pg.200 ]




SEARCH



Chromium oxidants

Chromium oxide

Chromium oxids

Oxides chromium oxide

© 2024 chempedia.info