Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromium iron sulphate

Many salts which are corrosive towards unalloyed iron because of their tendency to hydrolyse to release acid, e.g. calcium and zinc chlorides, are not dangerous to high-chromium irons. The more corrosive salts, typified by aluminium sulphate and ferric chloride, are, however, corrosive to high-chromium irons. Hot aluminium sulphate solutions can give corrosion rates greater than 1 27 mm/y although cold solutions corrode the alloys at rates not exceeding 0-127 mm/y. [Pg.617]

Sulphur attack on nickel-chromium alloys and nickel-chromium-iron alloys can arise from contamination by deposits resulting from the combustion of solid fuels, notably high-sulphur coals and peat. This type of corrosion, which has been observed on components of aircraft, marine and industrial gas turbines and air heaters, has been associated with the presence of metal-sulphate and particularly sodium sulphate arising directly from the fuel or perhaps by reaction between sodium chloride from the environment with sulphur in the fuel. Since such fuels are burned with an excess of air, corrosion occurs under conditions that are nominally oxidising although the deposits themselves may produce locally reducing conditions. [Pg.1064]

In the case of the alkali and alkaline earth metals, the sulphate is the sole product with copper, lead, bismuth and antimony, the product contains the metal, formed by reduction of the sulphate by unchanged sulphide. In cases where the sulphate is unstable at the temperature of reaction, as with zinc, cadmium, aluminium, tin, chromium, iron, cobalt and nickel, the oxide is the final product. The action may be catalytically accelerated by the addition of triferric tetroxide, Fe304.2... [Pg.119]

In the commoner cases the base is a hydrated metallic oxide (of aluminium, tin, lead, zinc or, less often, chromium, iron, copper, antimony) to which the colouring matter (if acid) is united by true chemical combination tannin lakes are also made (with basic colouring matters). In other lakes the base is an inert substance (barium sulphate, precipitated alumina and silica, chalk, gypsum, kaolin, etc.), on which the colouring matter is fixed by simple mechanical absorption. Lakes of the former kind may be mixed, either fraudulently or for the purpose of attenuating the colour, with inert materials. [Pg.402]

The residue of the calcination is treated with hydrochloric acid, the solution and any insoluble residue remaining being then analysed by the ordinary methods. Tests are made especially for alumina, zinc oxide, tin oxide, lead oxide, barium sulphate and calcium carbonate, and also for oxides of chromium, iron, copper and antimony, silicates and gypsum. [Pg.404]

All other sulphates are soluble in water, and can therefore be prepared by one of the usual methods, such as treatment of the oxide, carbonate, or metal with the acid. Dilute sulphuric acid dissolves magnesium, zinc, cadmium, aluminium, chromium, iron, manganese, nickel, and cobalt other metals resist its attack, because their electroaffinity is less than that of hydrogen. The order is Cs, Rb, K, Na, Li, Ba, Sr, Ca, Mg, Al, Mn, Zn, Cd, Cr, F e, Co, Ni, Pb —H Cu, Hg, Ag, Pt c., Au. All the metals to the left of hydrogen in the table are attacked, because they receive their ionic charge from the hydrogen... [Pg.160]

Further restrictions to the scope of the present article concern certain molecules which can in one or more of their canonical forms be represented as carbenes, e.g. carbon monoxide such stable molecules, which do not normally show carbenoid reactivity, will not be considered. Nor will there be any discussion of so-called transition metal-carbene complexes (see, for example, Fischer and Maasbol, 1964 Mills and Redhouse, 1968 Fischer and Riedel, 1968). Carbenes in these complexes appear to be analogous to carbon monoxide in transition-metal carbonyls. Carbenoid reactivity has been observed only in the case of certain iridium (Mango and Dvoretzky, 1966) and iron complexes (Jolly and Pettit, 1966), but detailed examination of the nature of the actual reactive intermediate, that is to say, whether the complexes react as such or first decompose to give free carbenes, has not yet been reported. A chromium-carbene complex has been suggested as a transient intermediate in the reduction of gfem-dihalides by chromium(II) sulphate because of structural effects on the reaction rate and because of the structure of the reaction products, particularly in the presence of unsaturated compounds (Castro and Kray, 1966). The subject of carbene-metal complexes reappears in Section IIIB. [Pg.156]

By far the most serious interference effects in the determination of calcium are due to anions such as phosphate, sulphate, arsenate and oxalate, and to elements such as aluminium, beryllium, boron, chromium, iron and molybdenum which can exist as anions in the flame. These all give rise to reductions in line intensities, probably due to the formation of compounds which are either of low volatility or are not dissociated. [Pg.147]

The dichromate ion oxidises iron(II) to iron(III), sulphite to sulphate ion, iodide ion to iodine and arsenic(III) to arsenic(V) (arsenate). Reduction of dichromate by sulphite can be used to prepare chrome alum, since, if sulphur dioxide is passed into potassium dichromate acidified with sulphuric acid, potassium and chromium(III) ions formed are in the correct ratio to form the alum, which appears on crystallisation ... [Pg.379]

The ash deposits resulting from the combustion of solid and oil fuels often contain appreciable quantities of other corrodants in addition to vanadium pentoxide. One of the more important of these is sodium sulphate, and the effects of this constituent in producing sulphur attack have been mentioned. The contents of sodium sulphate and vanadium pentoxide present in fuel oil ash can vary markedly and the relative merits of different materials depend to a great extent upon the proportions of these constituents. Exposure of heat-resisting alloys of varying nickel, chromium and iron contents to ash deposition in the super-heater zones of oil-fired boilers indicated a behaviour pattern depending on the composition of the alloy and of the ash... [Pg.1070]

Procedure. Weigh out accurately an amount of the salt which will contain about 0.25 g of chromium, and dissolve it in 50 mL distilled water. Add 20 mL of ca 0.1 M silver nitrate solution, followed by 50 mL of a 10 per cent solution of ammonium or potassium persulphate. Boil the liquid gently for 20 minutes. Cool, and dilute to 250 mL in a graduated flask. Remove 50 mL of the solution with a pipette, add 50 mL of a 0.1 M ammonium iron(II) sulphate solution (Section 10.97, Procedure A), 200 mL of 1M sulphuric acid, and 0.5 mL of /V-phenylanthranilic acid indicator. Titrate the excess of the iron(II) salt with standard 0.02M potassium dichromate until the colour changes from green to violet-red. [Pg.377]

Standardise the ammonium iron(II) sulphate solution against the 0.02/Vf potassium dichromate, using /V-phenylanthranilic add as indicator. Calculate the volume of the iron(II) solution which was oxidised by the dichromate originating from the chromium salt, and from this the percentage of chromium in the sample. [Pg.377]

With the exception of iron(II) and uranium(IV), the reduced solutions are extremely unstable and readily re-oxidise upon exposure to air. They are best stabilised in a five-fold excess of a solution of 150g of ammonium iron(III) sulphate and 150 mL of concentrated sulphuric acid per litre [approximately 0.3M with respect to iron] contained in the filter flask. The iron(II) formed is then titrated with a standard solution of a suitable oxidising agent. Titanium and chromium are completely oxidised and produce an equivalent amount of iron(II) sulphate molybdenum is re-oxidised to the Mo(V) (red) stage, which is fairly stable in air, and complete oxidation is effected by the permanganate, but the net result is the same, viz. Mo(III)- Mo(VI) vanadium is re-oxidised to the V(IV), condition, which is stable in air, and the final oxidation is completed by slow titration with potassium permanganate solution or with cerium(IV) sulphate solution. [Pg.412]

In the presence of certain cations [sodium, potassium, lithium, calcium, aluminium, chromium, and iron(III)], co-precipitation of the sulphates of these metals occurs, and the results will accordingly be low. This error cannot be entirely avoided except by the removal of the interfering ions. Aluminium, chromium, and iron may be removed by precipitation, and the influence of the other ions, if present, is reduced by considerably diluting the solution and by digesting the precipitate (Section 11.5). It must be pointed out that the general method of re-precipitation, in order to obtain a purer precipitate, cannot be employed, because no simple solvent (other than concentrated sulphuric acid) is available in which the precipitate may be easily dissolved. [Pg.491]

The chromium in the substance is converted into chromate or dichromate by any of the usual methods. A platinum indicator electrode and a saturated calomel electrode are used. Place a known volume of the dichromate solution in the titration beaker, add 10 mL of 10 per cent sulphuric acid or hydrochloric acid per 100 mL of the final volume of the solution and also 2.5 mL of 10 per cent phosphorus) V) acid. Insert the electrodes, stir, and after adding 1 mL of a standard ammonium iron)II) sulphate solution, the e.m.f. is measured. Continue to add the iron solution, reading the e.m.f. after each addition, then plot the titration curve and determine the end point. [Pg.584]

Large amounts of chloride, cobalt(II), and chromium(III) do not interfere iron(III), nickel, molybdenum)VI), tungsten(VI), and uranium(VI) are innocuous nitrate, sulphate, and perchlorate ions are harmless. Large quantities of magnesium, cadmium, and aluminium yield precipitates which may co-precipitate manganese and should therefore be absent. Vanadium causes difficulties only... [Pg.584]

Chromium in steel Discussion. The chromium in the steel is oxidised by perchloric acid to the dichromate ion, the colour of which is intensified by iron (III) perchlorate which is itself colourless. The coloured solution is compared with a blank in which the dichromate is reduced with ammonium iron(II) sulphate. The method is not subject to interference by iron or by moderate amounts of alloying elements usually present in steel. [Pg.687]

In all 28 parameters were individually mapped alkalinity, aluminum, antimony, arsenic, barium, boron, bromide, cadmium, calcium, chloride, chromium, conductivity, copper, fluoride, hardness, iron, lead, magnesium, manganese, nitrate, pH, potassium, selenium, sodium, sulphate, thallium, uranium, and zinc. These parameters constitute the standard inorganic analysis conducted at the DENV Analytical Services Laboratory. [Pg.458]


See other pages where Chromium iron sulphate is mentioned: [Pg.1101]    [Pg.324]    [Pg.161]    [Pg.1584]    [Pg.324]    [Pg.145]    [Pg.145]    [Pg.116]    [Pg.257]    [Pg.1130]    [Pg.174]    [Pg.314]    [Pg.443]    [Pg.259]    [Pg.409]    [Pg.687]    [Pg.696]    [Pg.859]    [Pg.872]    [Pg.116]    [Pg.276]    [Pg.258]    [Pg.271]    [Pg.315]    [Pg.739]    [Pg.1093]   
See also in sourсe #XX -- [ Pg.257 ]




SEARCH



Chromium sulphate

Iron sulphate

© 2024 chempedia.info