Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromatography Pesticides

Follweiler, J., and J. Sherma, Handbook of Chromatography-Pesticides, CRC Press, Boca Raton, FL, 1984. [Pg.1152]

Use For chromatography, pesticide, residue analysis, spectrophotometry, and semiconductor wafer processing. [Pg.1057]

Chromatography Amino Acids Food Appiications. Mass Spectrometry Eiectrospray. Micellar Electrokinetic Chromatography. Pesticides. Proteins Foods. Sweeteners. Vitamins Overview. [Pg.396]

Follweiler, J. Sherma, J. Handbook of Chromatography— Pesticides, CRC Press Boca Raton, EL, 1984. [Pg.1755]

This publication provides several examples of the use of solid-phase extractions for separating analytes from their matrices. Some of the examples included are caffeine from coffee, polyaromatic hydrocarbons from water, parabens from cosmetics, chlorinated pesticides from water, and steroids from hydrocortisone creams. Extracted analytes maybe determined quantitatively by gas (GC) or liquid chromatography (LG). [Pg.226]

Pesticides. Chlorinated hydrocarbon pesticides (qv) are often found in feed or water consumed by cows (19,20) subsequently, they may appear in the milk, where they are not permitted. Tests for pesticides are seldom carried out in the dairy plant, but are most often done in regulatory or private specialized laboratories. Examining milk for insecticide residues involves extraction of fat, because the insecticide is contained in the fat, partitioning with acetonitrile, cleanup (FlorisH [26686-77-1] column) and concentration, saponification if necessary, and determination by means of paper, thin-layer, microcoulometric gas, or electron capture gas chromatography (see Trace and residue analysis). [Pg.364]

The U.S. FDA monitors foods for half of the approximately 300 pesticides having official EPA tolerances as weU as a number of other pesticides that have no official tolerances. Multiresidue methods, most of which are based on chromatography protocols, are employed (7). Not aU pesticides are monitored on aU foods and sampling (qv) is purposely biased to catch possible problems. The overaU iacidence of iUegal pesticide residue is, however, quite smaU 1% for domestic surveiUance samples and 3% for imported foods. The methods employed can usuaUy quantify residues present at 0.01 ppm. Quantitation limits range from 0.005 to 1 ppm. [Pg.241]

High performance Hquid chromatography with electrochemical detection has been used to determine 2—7 ppb of carbamate pesticides in water (40). The investigated pesticides were aminocarb, asulam, j -butylphenyknethylcarbamate (BPMC), carbaryl, carbenda2im, chlorpropham, desmedipham, and phenmedipham. [Pg.233]

Observing the amount and variety of pesticides analyzed by GC chromatography we decided to observe 14 of the most represented pesticides Prometryn, Deltamethrin, Fenitrothion, Tebuconazole, Buprofezin, Malathion, Myclobutanyl, Atrazine, Acetochlor, Bifenthrin, Alachlor, Pendimethalin, Dichlonuid and Trifluralin. [Pg.192]

Pesticides in air and on surfaces Pumped filters/sorbent tubes with gas chromatography 94... [Pg.362]

Figure 2.8 (a) HPLC fractionation of orange oil on Lichrosorb 100 diol. (b) LC-GC-NPD analysis of peel orange oil (from Florida), contaminated with etliion. Reprinted from Proceedings of the 20tlr International Symposium on Capillary Chromatography, F. David et ai, On-line LC-PTV-CGC determination of pesticides in essential oils , 1998, with permission from Sandra P. [Pg.27]

A method which uses supercritical fluid/solid phase extraction/supercritical fluid chromatography (SE/SPE/SEC) has been developed for the analysis of trace constituents in complex matrices (67). By using this technique, extraction and clean-up are accomplished in one step using unmodified SC CO2. This step is monitored by a photodiode-array detector which allows fractionation. Eigure 10.14 shows a schematic representation of the SE/SPE/SEC set-up. This system allowed selective retention of the sample matrices while eluting and depositing the analytes of interest in the cryogenic trap. Application to the analysis of pesticides from lipid sample matrices have been reported. In this case, the lipids were completely separated from the pesticides. [Pg.241]

Figure 10.14 Schematic representation of the SFSPE/SFC set-up developed by Murugaverl and Vooi hees (67). Reprinted from Journal of Microcolumn Separation, 3, B. Mumgaverl and K. J. Vooi hees, On-line supercritical fluid exti aaion/chromatography system for ti ace analysis of pesticides in soybean oil and rendered fats , pp. 11-16, 1991, with permission from John Wiley and Sons, Inc. Figure 10.14 Schematic representation of the SFSPE/SFC set-up developed by Murugaverl and Vooi hees (67). Reprinted from Journal of Microcolumn Separation, 3, B. Mumgaverl and K. J. Vooi hees, On-line supercritical fluid exti aaion/chromatography system for ti ace analysis of pesticides in soybean oil and rendered fats , pp. 11-16, 1991, with permission from John Wiley and Sons, Inc.
E. A. Hoogendoom and P. van Zoonen, Coupled-column reversed phase liquid chromatography as a versatile technique for the determination of polar pesticides in Environmental Analysis - Techniques, Applications and quality assurance, Barcelo D (Ed.), Vol. 13, Elsevier, Amsterdam, pp. 181-196 (1993). [Pg.292]

Figure 13.7 Selectivity effected by employing different step gradients in the coupled-column RPLC analysis of a surface water containing 0.40 p-g 1 bentazone, by using direct sample injection (2.00 ml). Clean-up volumes, (a), (c) and (d) 4.65 ml of M-1, and (b) 3.75 ml of M-1 transfer volumes, (a), (c) and (d), 0.50 ml of M-1, and (b), 0.40 ml of M-1. The displayed cliromatograms start after clean-up on the first column. Reprinted from Journal of Chromatography, A 644, E. A. Hogendoom et al, Coupled-column reversed-phase liquid chromatography-UV analyser for the determination of polar pesticides in water , pp. 307-314, copyright 1993, with permission from Elsevier Science. Figure 13.7 Selectivity effected by employing different step gradients in the coupled-column RPLC analysis of a surface water containing 0.40 p-g 1 bentazone, by using direct sample injection (2.00 ml). Clean-up volumes, (a), (c) and (d) 4.65 ml of M-1, and (b) 3.75 ml of M-1 transfer volumes, (a), (c) and (d), 0.50 ml of M-1, and (b), 0.40 ml of M-1. The displayed cliromatograms start after clean-up on the first column. Reprinted from Journal of Chromatography, A 644, E. A. Hogendoom et al, Coupled-column reversed-phase liquid chromatography-UV analyser for the determination of polar pesticides in water , pp. 307-314, copyright 1993, with permission from Elsevier Science.
Figure 13.15 Chromatograms obtained by on-line ti ace enrichment of 50 ml of Ebro river water with and without the addition of different volumes of 10% Na2S03 solution for every 100 ml of sample (a) blank with the addition of 1000 p.1 of sulfite (b) spiked with 4 p.g 1 of the analytes and 1000 p.1 of sulfite (c) spiked with 4 p.g 1 of the analytes and 500 p.1 of sulfite (d) spiked with 4 p.g 1 of the analytes without sulfite. Peak identification is as follows 1, oxamyl 2, methomyl 3, phenol 4, 4-niti ophenol 5, 2,4-dinitrophenol 6, 2-chlorophenol 7, bentazone 8, simazine 9, MCPA 10, atrazine. Reprinted from Journal of Chromatography, A 803, N. Masque et ai, New chemically modified polymeric resin for solid-phase extraction of pesticides and phenolic compounds from water , pp. 147-155, copyright 1998, with permission from Elsevier Science. Figure 13.15 Chromatograms obtained by on-line ti ace enrichment of 50 ml of Ebro river water with and without the addition of different volumes of 10% Na2S03 solution for every 100 ml of sample (a) blank with the addition of 1000 p.1 of sulfite (b) spiked with 4 p.g 1 of the analytes and 1000 p.1 of sulfite (c) spiked with 4 p.g 1 of the analytes and 500 p.1 of sulfite (d) spiked with 4 p.g 1 of the analytes without sulfite. Peak identification is as follows 1, oxamyl 2, methomyl 3, phenol 4, 4-niti ophenol 5, 2,4-dinitrophenol 6, 2-chlorophenol 7, bentazone 8, simazine 9, MCPA 10, atrazine. Reprinted from Journal of Chromatography, A 803, N. Masque et ai, New chemically modified polymeric resin for solid-phase extraction of pesticides and phenolic compounds from water , pp. 147-155, copyright 1998, with permission from Elsevier Science.
Figure 13.19 Chromatograms obtained by on-line SPE-GC-MS(SIM) of (a) 10 ml of tap water spiked with pesticides at levels of 0.1 ng 1 (b) 10 ml of a sample of unspiked tap water. Peak identification foi (a) is as follows 1, molinate 2, a-HCH 3, dimethoate 4, simazine 5, ati azine 6, y-HCH 7, S-HCH 8, heptachloi 9, ametiyn 10, prometiyn 11, fen-itrothion 12, aldrin 13, malatliion 14, endo-heptachlor 15, a-endosulfan 16, teti achlor-vinphos 17, dieldrin. Reprinted from Journal of Chromatography, A 818, E. Pocumll et al., On-line coupling of solid-phase exti action to gas cliromatography with mass specti ometiic detection to determine pesticides in water , pp. 85-93, copyright 1998, with permission from Elsevier Science. Figure 13.19 Chromatograms obtained by on-line SPE-GC-MS(SIM) of (a) 10 ml of tap water spiked with pesticides at levels of 0.1 ng 1 (b) 10 ml of a sample of unspiked tap water. Peak identification foi (a) is as follows 1, molinate 2, a-HCH 3, dimethoate 4, simazine 5, ati azine 6, y-HCH 7, S-HCH 8, heptachloi 9, ametiyn 10, prometiyn 11, fen-itrothion 12, aldrin 13, malatliion 14, endo-heptachlor 15, a-endosulfan 16, teti achlor-vinphos 17, dieldrin. Reprinted from Journal of Chromatography, A 818, E. Pocumll et al., On-line coupling of solid-phase exti action to gas cliromatography with mass specti ometiic detection to determine pesticides in water , pp. 85-93, copyright 1998, with permission from Elsevier Science.
N. Masque, R. M. Marce and R Bonnll, Comparison of different sorbents for on-line solid-phase exti action of pesticides and phenolic compounds from natural water followed by liquid chromatography , J. Chromatogr. 793 257-263 (1998). [Pg.373]

Figure 15.1 Separation of pesticides from butter by using LC-GC-ECD. Peak identification is as follows 1, HCB 2, lindane 5, aldrin 7, o,p -DDE 10, endrin 11, o,p -DDT 13, p,p -DDT peaks 3, 4, 6, 8, 9, 12, 14, 15 and 16 were not identified. Adapted from Journal of High Resolution Chromatography, 13, R. Barcarolo, Coupled EC-GC a new method for the on-line analysis of organchlorine pesticide residues in fat , pp. 465-469, 1990, with permission from Wiley-VCH. Figure 15.1 Separation of pesticides from butter by using LC-GC-ECD. Peak identification is as follows 1, HCB 2, lindane 5, aldrin 7, o,p -DDE 10, endrin 11, o,p -DDT 13, p,p -DDT peaks 3, 4, 6, 8, 9, 12, 14, 15 and 16 were not identified. Adapted from Journal of High Resolution Chromatography, 13, R. Barcarolo, Coupled EC-GC a new method for the on-line analysis of organchlorine pesticide residues in fat , pp. 465-469, 1990, with permission from Wiley-VCH.
Figure 15.13 Comprehensive two-dimensional GC chromatogram of a supercritical fluid exti act of spiked human semm. Peak identification is as follows 1, dicamha 2, tiifluralin 3, dicliloran 4, phorate 5, pentachlorophenol 6, atrazine 7, fonofos 8, diazinon 9, cWorothalonil 10, terhufos 11, alachlor 12, matalaxyl 13, malathion 14, metalochlor 15, DCPA 16, captan 17, folpet 18, heptadecanoic acid. Adapted imm Analytical Chemistry, 66, Z. Liu et al., Comprehensive two-dimensional gas chromatography for the fast separation and determination of pesticides exuacted from human senim , pp. 3086-3092, copyright 1994, with pemiission from the American Chemical Society. Figure 15.13 Comprehensive two-dimensional GC chromatogram of a supercritical fluid exti act of spiked human semm. Peak identification is as follows 1, dicamha 2, tiifluralin 3, dicliloran 4, phorate 5, pentachlorophenol 6, atrazine 7, fonofos 8, diazinon 9, cWorothalonil 10, terhufos 11, alachlor 12, matalaxyl 13, malathion 14, metalochlor 15, DCPA 16, captan 17, folpet 18, heptadecanoic acid. Adapted imm Analytical Chemistry, 66, Z. Liu et al., Comprehensive two-dimensional gas chromatography for the fast separation and determination of pesticides exuacted from human senim , pp. 3086-3092, copyright 1994, with pemiission from the American Chemical Society.
The development of bonded phases (Section 8.2) for liquid-liquid chromatography on silica-gel columns is of major importance. For example, the widely used C-18 type permits the separation of moderately polar mixtures and is used for the analysis of pharmaceuticals, drugs and pesticides. [Pg.223]

Column Chromatography. Liquid-liquid partitioning has been used by several investigators for several pesticides, including pyrethrum (1,2,3,5,10,13). The most useful procedure allows the... [Pg.56]

Figure 5.1 Pesticides included in the systematic investigations on APCI-MS signal response dependence on eluent flow rate the parameter IsTow represents the distribution coefficient of the pesticide between n-octanol and water. Reprinted from J. Chromatogr, A, 937, Asperger, A., Efer, 1., Koal, T. and Engewald, W., On the signal response of various pesticides in electrospray and atmospheric pressure chemical ionization depending on the flow rate of eluent applied in liquid chromatography-mass spectrometry , 65-72, Copyright (2001), with permission from Elsevier Science. Figure 5.1 Pesticides included in the systematic investigations on APCI-MS signal response dependence on eluent flow rate the parameter IsTow represents the distribution coefficient of the pesticide between n-octanol and water. Reprinted from J. Chromatogr, A, 937, Asperger, A., Efer, 1., Koal, T. and Engewald, W., On the signal response of various pesticides in electrospray and atmospheric pressure chemical ionization depending on the flow rate of eluent applied in liquid chromatography-mass spectrometry , 65-72, Copyright (2001), with permission from Elsevier Science.

See other pages where Chromatography Pesticides is mentioned: [Pg.215]    [Pg.219]    [Pg.446]    [Pg.446]    [Pg.307]    [Pg.400]    [Pg.111]    [Pg.65]    [Pg.65]    [Pg.189]    [Pg.374]    [Pg.43]    [Pg.105]    [Pg.238]    [Pg.247]    [Pg.351]    [Pg.408]    [Pg.161]    [Pg.196]    [Pg.197]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Chromatography extracted carbamate pesticides

Cleanup methods,pesticide column chromatography

High performance liquid chromatography organophosphorus pesticides

High-performance liquid chromatography pesticides

Liquid chromatography/mass spectrometry pesticides

Pesticides liquid chromatography

© 2024 chempedia.info