Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromatographic system sample

An ion chromatographic system that included column switching and gradient analysis was used for the deterrnination of cations such as Na", Ca ", Mg ", K", and NH" 4 and anions such as Cf, NO, NO , and in fog water samples (72). Ion-exchange chromatography compares very well with... [Pg.245]

Having established that a finite volume of sample causes peak dispersion and that it is highly desirable to limit that dispersion to a level that does not impair the performance of the column, the maximum sample volume that can be tolerated can be evaluated by employing the principle of the summation of variances. Let a volume (Vi) be injected onto a column. This sample volume (Vi) will be dispersed on the front of the column in the form of a rectangular distribution. The eluted peak will have an overall variance that consists of that produced by the column and other parts of the mobile phase conduit system plus that due to the dispersion from the finite sample volume. For convenience, the dispersion contributed by parts of the mobile phase system, other than the column (except for that from the finite sample volume), will be considered negligible. In most well-designed chromatographic systems, this will be true, particularly for well-packed GC and LC columns. However, for open tubular columns in GC, and possibly microbore columns in LC, where peak volumes can be extremely small, this may not necessarily be true, and other extra-column dispersion sources may need to be taken into account. It is now possible to apply the principle of the summation of variances to the effect of sample volume. [Pg.194]

The curves show that the peak capacity increases with the column efficiency, which is much as one would expect, however the major factor that influences peak capacity is clearly the capacity ratio of the last eluted peak. It follows that any aspect of the chromatographic system that might limit the value of (k ) for the last peak will also limit the peak capacity. Davis and Giddings [15] have pointed out that the theoretical peak capacity is an exaggerated value of the true peak capacity. They claim that the individual (k ) values for each solute in a realistic multi-component mixture will have a statistically irregular distribution. As they very adroitly point out, the solutes in a real sample do not array themselves conveniently along the chromatogram four standard deviations apart to provide the maximum peak capacity. [Pg.206]

Unfortunately, some of the data that are required to calculate the specifications and operating conditions of the optimum column involve instrument specifications which are often not available from the instrument manufacturer. In particular, the total dispersion of the detector and its internal connecting tubes is rarely given. In a similar manner, a value for the dispersion that takes place in a sample valve is rarely provided by the manufactures. The valve, as discussed in a previous chapter, can make a significant contribution to the extra-column dispersion of the chromatographic system, which, as has also been shown, will determine the magnitude of the column radius. Sadly, it is often left to the analyst to experimentally determine these data. [Pg.367]

In a packed column the HETP depends on the particle diameter and is not related to the column radius. As a result, an expression for the optimum particle diameter is independently derived, and then the column radius determined from the extracolumn dispersion. This is not true for the open tubular column, as the HETP is determined by the column radius. It follows that a converse procedure must be employed. Firstly the optimum column radius is determined and then the maximum extra-column dispersion that the column can tolerate calculated. Thus, with open tubular columns, the chromatographic system, in particular the detector dispersion and the maximum sample volume, is dictated by the column design which, in turn, is governed by the nature of the separation. [Pg.392]

The problem is made more difficult because these different dispersion processes are interactive and the extent to which one process affects the peak shape is modified by the presence of another. It follows if the processes that causes dispersion in mass overload are not random, but interactive, the normal procedures for mathematically analyzing peak dispersion can not be applied. These complex interacting effects can, however, be demonstrated experimentally, if not by rigorous theoretical treatment, and examples of mass overload were included in the work of Scott and Kucera [1]. The authors employed the same chromatographic system that they used to examine volume overload, but they employed two mobile phases of different polarity. In the first experiments, the mobile phase n-heptane was used and the sample volume was kept constant at 200 pi. The masses of naphthalene and anthracene were kept... [Pg.428]

Every chromatographic investigation begins with the preparation of the sample and the chromatographic system. This is followed by the crux of the separation process (development of the chromatogram) which is in turn followed by the visualization of the separated substances and the preservation of the chromatogram and finally by the analysis of the results. [Pg.119]

Samples and reference substances should be dissolved in the same solvents to ensure that comparable substance distribution occurs in all the starting zones. In order to keep the size of the starting zones down to a minimum (diameter TLC 2 to 4 mm, HPTLC 0.5 to 1 mm) the application volumes are normally limited to a maximum of 5 xl for TLC and 500 nl for HPTLC when the samples are applied as spots. Particularly in the case of adsorption-chromatographic systems layers with concentrating zones offer another possibility of producing small starting zones. Here the applied zones are compressed to narrow bands at the solvent front before the mobile phase reaches the active chromatographic layer. [Pg.131]

As known, SEC separates molecules and particles according to their hydro-dynamic volume in solution. In an ideal case, the SEC separation is based solely on entropy changes and is not accompanied with any enthalpic processes. In real systems, however, enthalpic interactions among components of the chromatographic system often play a nonnegligible role and affect the corresponding retention volumes (Vr) of samples. This is clearly evident from the elution behavior of small molecules, which depends rather strongly on their chemical nature and on the properties of eluent used. This is the case even for... [Pg.445]

Unquestionably, most practical planar chromatographic (PC) analytical problems can be solved by the use of a single thin-layer chromatographic (TLC) plate and for most analytical applications it would be impractical to apply two-dimensional (2-D) TLC. One-dimensional chromatographic systems, however, often have an inadequate capability for the clean resolution of the compounds present in complex biological samples, and because this failure becomes increasingly pronounced as the number of compounds increases (1), multidimensional (MD) separation procedures become especially important for such samples. [Pg.170]

Injector A common term for the method of sample introduction into a chromatographic system. [Pg.306]

For illustration consider SEC chromatograms obtained for two polymers on the same chromatographic system. One sample is a linear homopolymer while the other is a branched polymer with the same chemical composition. In the latter sample assume that the polymer components of different molecular weight have uniform branching characteristics so that all have similar molecular size/weight relationships. [Pg.108]

The specific retention of sample molecules to be separated in a straight phase or adsorption chromatographic system is mainly determined by two factors their interactions with polar surface centers of the solid stationary phase, and by the different sample solubility in the rather nonpolar mobile phase. The most important interactions... [Pg.41]


See other pages where Chromatographic system sample is mentioned: [Pg.61]    [Pg.61]    [Pg.61]    [Pg.2823]    [Pg.162]    [Pg.149]    [Pg.270]    [Pg.61]    [Pg.61]    [Pg.61]    [Pg.2823]    [Pg.162]    [Pg.149]    [Pg.270]    [Pg.539]    [Pg.66]    [Pg.107]    [Pg.107]    [Pg.4]    [Pg.17]    [Pg.232]    [Pg.359]    [Pg.363]    [Pg.367]    [Pg.418]    [Pg.353]    [Pg.112]    [Pg.113]    [Pg.127]    [Pg.147]    [Pg.250]    [Pg.251]    [Pg.252]    [Pg.290]    [Pg.942]    [Pg.302]    [Pg.220]    [Pg.117]    [Pg.196]    [Pg.40]    [Pg.28]   
See also in sourсe #XX -- [ Pg.374 ]




SEARCH



Chromatographic system

Chromatographic systems sample preparation

Sampling system

© 2024 chempedia.info