Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cholesterol bile acid synthesis

Bile acid synthesis from cholesterol is the prime pathway for cholesterol catabolism. Cholesterol is converted into bile acids via multiple pathways which involve 17 different enzymes. Many of these enzymes are predominantly expressed in the liver and are localized in several different subcellular... [Pg.256]

CYP7A1 catalyzes the 7a-hydroxylation of cholesterol, the first and rate limiting step of bile acid synthesis. This is also the principal way to eliminate cholesterol. CYP7B1 is primarily expressed in brain and catalyzes the synthesis of various neurosteroids and also the 7a-hydroxylation of oxysterols. [Pg.926]

CYP27A1 catalyzes the side chain oxidation (27-hydroxylation) in bile acid biosynthesis. Because bile acid synthesis is the only elimination pathway for cholesterol, mutations in the CYP27A1 gene lead to abnormal deposition of cholesterol and cholestanol in various tissues. This sterol storage disorder is known as cerebrotendinous xanthomatosis. CYP27B1 is the 1-alpha hydroxylase of vitamin D3 that converts it to the active vitamin form. The function of CYP27C1 is not yet known. [Pg.927]

Reihner E, Bjorkhem I, Angelin B, Ewerth S, Einarsson K. Bile acid synthesis in humans regulation of hepatic microsomal cholesterol 7 alpha-hydroxy-... [Pg.276]

Everson, G. T., Daggy, B. P., McKinley, C., and Story, J. A. (1992). Effects of psyllium hydrophilic mucilloid on LDL-cholesterol and bile acid synthesis in hypercholesterole-... [Pg.216]

Cholesterol is required for membrane synthesis, steroid synthesis, and in the liver, bile acid synthesis. Most cells derive their cholesterol from LDL or HDL, but some cholesterol may be synthesized de novo. Most de novo synthesis occurs in the liver, vfhere cholesterol is synthesized from acetyl CoA in the cytoplasm. The citrate shutde carries mitochondrial acetyl CoA into the cytoplasm, and NADPH is provided by the HMP shunt and malic enzyme. Important points are noted in Figure 1-15-9,... [Pg.219]

Figure 1.1 illustrates a condensed version of the classical pathway of bile-acid synthesis, a series of 12 enzymatic reactions that convert cholesterol, which is insoluble, into BAs, which are water soluble. The cholesterol is first converted to 7 alpha-hydroxy cholesterol, followed by the series of enzymatic transformations, eventually producing cholic and chenodeoxycholic acids (not all steps shown). The rate-limiting enzyme in this pathway is cholesterol 7 alpha-hydroxylase (CYP 7A1), which originates from microsomal cytochrome P-450 enzymes, expressed only in the liver hepatocytes. [Pg.4]

In addition to treatment with the statins, hypercholesterolemia is sometimes treated with the use of nonabsorbable anion-exchange resins like cholestyramine (5.13) and colestipol, which sequester bile acid in the intestine, excrete them, and thus increase their synthesis in the liver by a feedback mechanism. Increased bile acid synthesis increases cholesterol metabolism and also decreases LDL concentrations. Unfortunately, these resins interfere with the absorption of other fats and fat-soluble vitamins (A, D, E, and K). They... [Pg.319]

Much of the cholesterol synthesis in vertebrates takes place in the liver. A small fraction of the cholesterol made there is incorporated into the membranes of he-patocytes, but most of it is exported in one of three forms biliary cholesterol, bile acids, or cholesteryl esters. Bile acids and their salts are relatively hydrophilic cholesterol derivatives that are synthesized in the liver and aid in lipid digestion (see Fig. 17-1). Cholesteryl esters are formed in the liver through the action of acyl-CoA-cholesterol acyl transferase (ACAT). This enzyme catalyzes the transfer of a fatty acid from coenzyme A to the hydroxyl group of cholesterol (Fig. 21-38), converting the cholesterol to a more hydrophobic form. Cholesteryl esters are transported in secreted lipoprotein particles to other tissues that use cholesterol, or they are stored in the liver. [Pg.820]

Mitochondrial system The function of the mitochondrial cyto chrome P450 monooxygenase system is to participate in the hydroxylation of steroids, a process that makes these hydropho bic compounds more water soluble. For example, in the steroid hormone-producing tissues, such as the placenta, ovaries, testes, and adrenal cortex, it is used to hydroxylate intermediates in the conversion of cholesterol to steroid hormones. The liver uses this system in bile acid synthesis (see p. 222), and the kidney uses it to hydroxylate vitamin 25-hydroxycholecalciferol (vitamin D, see p. 384) to its biologically active 1,25-hydroxylated form. [Pg.147]

Bile salts secreted into the intestine are efficiently reabsorbed (greater than 95 percent) and reused. The mixture of primary and secondary bile acids and bile salts is absorbed primarily in the ileum. They are actively transported from the intestinal mucosal cells into the portal blood, and are efficiently removed by the liver parenchymal cells. [Note Bile acids are hydrophobic and require a carrier in the portal blood. Albumin carries them in a noncovalent complex, just as it transports fatty acids in blood (see p. 179).] The liver converts both primary and secondary bile acids into bile salts by conjugation with glycine or taurine, and secretes them into the bile. The continuous process of secretion of bile salts into the bile, their passage through the duodenum where some are converted to bile acids, and their subsequent return to the liver as a mixture of bile acids and salts is termed the enterohepatic circulation (see Figure 18.11). Between 15 and 30 g of bile salts are secreted from the liver into the duodenum each day, yet only about 0.5 g is lost daily in the feces. Approximately 0.5 g per day is synthesized from cholesterol in the liver to replace the lost bile acids. Bile acid sequestrants, such as cholestyramine,2 bind bile acids in the gut, prevent their reabsorption, and so promote their excretion. They are used in the treatment of hypercholesterolemia because the removal of bile acids relieves the inhibition on bile acid synthesis in the liver, thereby diverting additional cholesterol into that pathway. [Note Dietary fiber also binds bile acids and increases their excretion.]... [Pg.223]

The metabolism of HDL probably involves interaction with both hepatic and peripheral cells, as well as with other lipoproteins. HDL may remove cholesterol from tissues, the "scavenger hypothesis (11,12). The cholesterol may then be esterifed by the action of lecithin cholesterol acyl transferase. HDL may provide cholesterol to the liver for bile acid synthesis (13) and some HDL may be catabolized by the liver in the process. HDL has not been found to interfere with the binding of LDL in cultured human fibroblasts (6). However, in cultured human arterial cells, porcine or rat hepatocytes, and rat adrenal gland, there appears to be some competition of HDL with LDL binding sites, suggesting the presence of a "lipoprotein-binding" site (14). [Pg.267]

The rate-limiting step of bile acid synthesis is cholesterol 7-a-hydroxylase. The changes in enzyme activity are the result of altered levels of cholesterol 7-a-hydroxylase mRNA. [Pg.392]

ACAT transfers amino-acyl groups from one molecule to another. ACAT is an important enzyme in bile acid synthesis, and catalyses the intracellular esterification of cholesterol and formation of cholesteryl esters. ACAT-mediated esterification of cholesterol limits its solubility in the cell membrane and thus promotes accumulation of cholesterol ester in the fat droplets within the cytoplasm this process is important in preventing the toxic accumulation of free cholesterol that would otherwise damage ceU-membrane structure and function. Most of the cholesterol absorbed during intestinal transport undergoes ACAT-mediated esterification before incorporation into chylomicrons. In the liver, ACAT-mediated esterification of cholesterol is involved in the production and release of apo-B-containing lipoproteins. [Pg.102]

Cholestyramine or colestipol (resins). These are compounds that bind bile acids the drop in hepatic reabsorption of bile acids releases a feedback inhibition, resulting in a greater amount of cholesterol being converted to bile acids to maintain a steady level in the circulation. Additionally, synthesis of LDL receptors increases to allow for the increased cholesterol uptake for bile acid synthesis the overall effect is a reduction in plasma cholesterol. [Pg.105]

HMG-CoA reductase is the rate-limiting step of cholesterol biosynthesis, and is subject to complex regulatory controls. A relatively constant level of cholesterol in the body (150-200 mg/dl) is maintained primarily by controlling the level of de novo synthesis. The level of cholesterol synthesis is regulated in part by the dietary intake of cholesterol. Cholesterol from both diet and synthesis is utilised in the formation of membranes and in the synthesis of the steroid hormones and bile acids. The greatest proportion of cholesterol is used in bile acid synthesis. [Pg.115]


See other pages where Cholesterol bile acid synthesis is mentioned: [Pg.157]    [Pg.157]    [Pg.257]    [Pg.258]    [Pg.697]    [Pg.699]    [Pg.223]    [Pg.229]    [Pg.269]    [Pg.327]    [Pg.197]    [Pg.5]    [Pg.314]    [Pg.432]    [Pg.126]    [Pg.222]    [Pg.224]    [Pg.234]    [Pg.235]    [Pg.239]    [Pg.260]    [Pg.168]    [Pg.181]    [Pg.288]    [Pg.661]    [Pg.163]    [Pg.270]    [Pg.191]    [Pg.114]    [Pg.257]    [Pg.258]    [Pg.697]    [Pg.699]   
See also in sourсe #XX -- [ Pg.2 , Pg.277 ]

See also in sourсe #XX -- [ Pg.277 ]




SEARCH



Bile acid, cholesterol

Cholesterol synthesis

© 2024 chempedia.info