Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cholesterol bile acid synthesis from

Bile acid synthesis from cholesterol is the prime pathway for cholesterol catabolism. Cholesterol is converted into bile acids via multiple pathways which involve 17 different enzymes. Many of these enzymes are predominantly expressed in the liver and are localized in several different subcellular... [Pg.256]

Javltt, NJ. Bile acid synthesis from cholesterol regulatory and auxiliary pathways. FASEB J. 1994 8 1308-1311... [Pg.630]

The occurrence of bile alcohols hydroxylated at position 25 in CTX patients indicated the presence of an alternate pathway of bile acid synthesis from cholesterol (via 25-hydroxylated intermediates ). In particular, the identification of 5P-cholestane-3a,7a,12a,24a,25-pentol indicated that cholic acid arised from the cleavage of a 24,25- glycol. [Pg.212]

Bile acid elimination can be stimulated easily in man experimentally with cholestyramine (90). This resin interrupts enterohepatic circulation by binding bile acids so that their fecal elimination increases in normal subjects to almost tenfold. Since this increase persists as long as cholestyramine is given, the loss must be balanced by increased bile acid synthesis from cholesterol, which in turn leads to a fall in the serum cholesterol level. Excessive decrease of the serum cholesterol level is inhibited by augmented cholesterol synthesis and to a small extent by mobilization of tissue cholesterol. [Pg.200]

Fig. 9.31 Bile acid synthesis from cholesterol [2539], The steps shown with dashed arrows are tentative. (With kind permission from Springer Science + Business Media [149], Fig. 10.18)... Fig. 9.31 Bile acid synthesis from cholesterol [2539], The steps shown with dashed arrows are tentative. (With kind permission from Springer Science + Business Media [149], Fig. 10.18)...
Cholesterol is required for membrane synthesis, steroid synthesis, and in the liver, bile acid synthesis. Most cells derive their cholesterol from LDL or HDL, but some cholesterol may be synthesized de novo. Most de novo synthesis occurs in the liver, vfhere cholesterol is synthesized from acetyl CoA in the cytoplasm. The citrate shutde carries mitochondrial acetyl CoA into the cytoplasm, and NADPH is provided by the HMP shunt and malic enzyme. Important points are noted in Figure 1-15-9,... [Pg.219]

Figure 1.1 illustrates a condensed version of the classical pathway of bile-acid synthesis, a series of 12 enzymatic reactions that convert cholesterol, which is insoluble, into BAs, which are water soluble. The cholesterol is first converted to 7 alpha-hydroxy cholesterol, followed by the series of enzymatic transformations, eventually producing cholic and chenodeoxycholic acids (not all steps shown). The rate-limiting enzyme in this pathway is cholesterol 7 alpha-hydroxylase (CYP 7A1), which originates from microsomal cytochrome P-450 enzymes, expressed only in the liver hepatocytes. [Pg.4]

Intestinal bacteria produce enzymes that can chemically alter the bile salts (4). The acid amide bond in the bile salts is cleaved, and dehydroxylation at C-7 yields the corresponding secondary bile acids from the primary bile acids (5). Most of the intestinal bile acids are resorbed again in the ileum (6) and returned to the liver via the portal vein (en-terohepatic circulation). In the liver, the secondary bile acids give rise to primary bile acids again, from which bile salts are again produced. Of the 15-30g bile salts that are released with the bile per day, only around 0.5g therefore appears in the feces. This approximately corresponds to the amount of daily de novo synthesis of cholesterol. [Pg.314]

Much of the cholesterol synthesis in vertebrates takes place in the liver. A small fraction of the cholesterol made there is incorporated into the membranes of he-patocytes, but most of it is exported in one of three forms biliary cholesterol, bile acids, or cholesteryl esters. Bile acids and their salts are relatively hydrophilic cholesterol derivatives that are synthesized in the liver and aid in lipid digestion (see Fig. 17-1). Cholesteryl esters are formed in the liver through the action of acyl-CoA-cholesterol acyl transferase (ACAT). This enzyme catalyzes the transfer of a fatty acid from coenzyme A to the hydroxyl group of cholesterol (Fig. 21-38), converting the cholesterol to a more hydrophobic form. Cholesteryl esters are transported in secreted lipoprotein particles to other tissues that use cholesterol, or they are stored in the liver. [Pg.820]

Bile salts secreted into the intestine are efficiently reabsorbed (greater than 95 percent) and reused. The mixture of primary and secondary bile acids and bile salts is absorbed primarily in the ileum. They are actively transported from the intestinal mucosal cells into the portal blood, and are efficiently removed by the liver parenchymal cells. [Note Bile acids are hydrophobic and require a carrier in the portal blood. Albumin carries them in a noncovalent complex, just as it transports fatty acids in blood (see p. 179).] The liver converts both primary and secondary bile acids into bile salts by conjugation with glycine or taurine, and secretes them into the bile. The continuous process of secretion of bile salts into the bile, their passage through the duodenum where some are converted to bile acids, and their subsequent return to the liver as a mixture of bile acids and salts is termed the enterohepatic circulation (see Figure 18.11). Between 15 and 30 g of bile salts are secreted from the liver into the duodenum each day, yet only about 0.5 g is lost daily in the feces. Approximately 0.5 g per day is synthesized from cholesterol in the liver to replace the lost bile acids. Bile acid sequestrants, such as cholestyramine,2 bind bile acids in the gut, prevent their reabsorption, and so promote their excretion. They are used in the treatment of hypercholesterolemia because the removal of bile acids relieves the inhibition on bile acid synthesis in the liver, thereby diverting additional cholesterol into that pathway. [Note Dietary fiber also binds bile acids and increases their excretion.]... [Pg.223]

The metabolism of HDL probably involves interaction with both hepatic and peripheral cells, as well as with other lipoproteins. HDL may remove cholesterol from tissues, the "scavenger hypothesis (11,12). The cholesterol may then be esterifed by the action of lecithin cholesterol acyl transferase. HDL may provide cholesterol to the liver for bile acid synthesis (13) and some HDL may be catabolized by the liver in the process. HDL has not been found to interfere with the binding of LDL in cultured human fibroblasts (6). However, in cultured human arterial cells, porcine or rat hepatocytes, and rat adrenal gland, there appears to be some competition of HDL with LDL binding sites, suggesting the presence of a "lipoprotein-binding" site (14). [Pg.267]

ACAT transfers amino-acyl groups from one molecule to another. ACAT is an important enzyme in bile acid synthesis, and catalyses the intracellular esterification of cholesterol and formation of cholesteryl esters. ACAT-mediated esterification of cholesterol limits its solubility in the cell membrane and thus promotes accumulation of cholesterol ester in the fat droplets within the cytoplasm this process is important in preventing the toxic accumulation of free cholesterol that would otherwise damage ceU-membrane structure and function. Most of the cholesterol absorbed during intestinal transport undergoes ACAT-mediated esterification before incorporation into chylomicrons. In the liver, ACAT-mediated esterification of cholesterol is involved in the production and release of apo-B-containing lipoproteins. [Pg.102]

HMG-CoA reductase is the rate-limiting step of cholesterol biosynthesis, and is subject to complex regulatory controls. A relatively constant level of cholesterol in the body (150-200 mg/dl) is maintained primarily by controlling the level of de novo synthesis. The level of cholesterol synthesis is regulated in part by the dietary intake of cholesterol. Cholesterol from both diet and synthesis is utilised in the formation of membranes and in the synthesis of the steroid hormones and bile acids. The greatest proportion of cholesterol is used in bile acid synthesis. [Pg.115]

Peroxisomes are small granules arranged in clusters around the smooth ER and glycogen stores. They contain about 50 enzymes, some of which are used in respiration, purine catabolism and alcohol metabolism. They are responsible for about 20% of the oxygen consumption in the liver via a respiratory pathway that produces heat rather than ATP as its product. They differ from lysosomes in that they are not formed from outgrowths of the Golgi apparatus but are self-replicating, rather like mitochondria. They also play an important role in the metabolism of fatty acids as well as cholesterol and bile acid synthesis. [Pg.15]

Patients also develop cholesterol gallstones from a defect in bile acid synthesis. The defect is in the mitochondrial C27-steroid 27-hydroxylase. In these patients, the reduced formation of normal bile acids, particularly chenodeoxycholic acid, leads to the up-regulation of the rate limiting enzyme Tct-hydroxylase of the bile acid synthetic pathway (discussed later). This leads to accumulation of 7a-hydroxylated bile acid intermediates that are not normally utilized. [Pg.417]

The initial and rate-limiting step of bile acid synthesis is oxidation of cholesterol to 7a-hydroxycholesterol by a mixed function oxidase from the cytochrome P450 superfamily, cholesterol 7a-hydroxylase (CYP7A1). [Pg.291]

During bile acid biosynthesis, modifications to the cyclopentanophen-anthrene (steroid) nucleus are thought to precede the oxidation and cleavage of the cholesterol side chain. The first and rate-controlling step in bile acid synthesis is the 7o-hydroxylation of cholesterol (I) to form 7a-hydroxy-choles-terol (II) (Fig. 3). This step is catalyzed by cholesterol 7a-monooxygenase (cholesterol 7a-hydroxylase) (EC 1.14.13.17), a microsomal enzyme (M37). Further metabolism of 7a-hydroxy-cholesterol involves oxidation of the 3p-hydroxyl group and isomerization of the double bond from C-5,6 to C-4,5,... [Pg.176]


See other pages where Cholesterol bile acid synthesis from is mentioned: [Pg.327]    [Pg.5]    [Pg.114]    [Pg.217]    [Pg.1782]    [Pg.277]    [Pg.351]    [Pg.697]    [Pg.699]    [Pg.229]    [Pg.197]    [Pg.314]    [Pg.126]    [Pg.224]    [Pg.234]    [Pg.235]    [Pg.239]    [Pg.168]    [Pg.181]    [Pg.288]    [Pg.661]    [Pg.191]    [Pg.697]    [Pg.699]    [Pg.580]    [Pg.218]    [Pg.1866]    [Pg.425]    [Pg.285]    [Pg.290]    [Pg.179]    [Pg.180]    [Pg.240]   
See also in sourсe #XX -- [ Pg.636 ]




SEARCH



Bile acid, cholesterol

Cholesterol synthesis

© 2024 chempedia.info