Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloroform, solution preparation, with

In the experiments above, water soluble antioxidants such as ascorbic acid and glutathione were added to the reaction solution as an aqueous solution, while P-carotene and a-tocopherol were added as a chloroform solution emulsified with sodium dodecyl sulphate. Electrochemically reduced water was prepared by use of TRIMION TI-8000 (Nihon Trim Inc, Osaka, Japan) fi om water purified by deionization and reverse osmosis, containing 0.02 % NaCl. In the CL measurements in this case, 600 pL of electrochemically reduced water and same volumes of other reagents as above were used, and then total volume of the reaction mixture was adjusted to 1 mL by changing the volume of DIW. [Pg.328]

At 225—275°C, bromination of the vapor yields bromochloromethanes CCl Br, CCl2Br2, and CClBr. Chloroform reacts with aluminum bromide to form bromoform, CHBr. Chloroform cannot be direcdy fluorinated with elementary flourine fluoroform, CHF, is produced from chloroform by reaction with hydrogen fluoride in the presence of a metallic fluoride catalyst (8). It is also a coproduct of monochlorodifluoromethane from the HF—CHCl reaction over antimony chlorofluoride. Iodine gives a characteristic purple solution in chloroform but does not react even at the boiling point. Iodoform, CHI, may be produced from chloroform by reaction with ethyl iodide in the presence of aluminum chloride however, this is not the route normally used for its preparation. [Pg.524]

Diphenylmethane has been prepared with aluminum chloride as a catalyst from methylene chloride and benzene, from chloroform and benzene as a by-product in the preparation of triphenylmethane, and from benzyl chloride and benzene. It has been prepared by the reduction of benzophenone with hydriodic acid and phosphorus, or with sodium and alcohol. It has also been made by heating a solution of benzyl chloride in benzene with zinc dust, or with zinc chloride. The above method is only a slight modification of the original method of Hirst and Cohen. ... [Pg.35]

Amines can also be purified via their salts, e.g. hydrochlorides. A solution of the amine in dry toluene, diethyl ether, dichloromethane or chloroform is saturated with dry hydrogen chloride (generated by addition of concentrated sulfuric acid to dry sodium chloride, or to concentrated HCl followed by drying the gas through sulfuric acid, or from a hydrogen chloride cylinder) and the insoluble hydrochloride is filte off and dissolved in water. The solution is made alkaline and the amine is extracted, as above. Hydrochlorides can also be prepared by dissolving the amine in ethanolic HCl and adding diethyl ether or petroleum ether. Where... [Pg.57]

Bis(3,4-diethyl-2-pyrrolylmethyl)-3,4-dietliyl-l//-pyrrole (2), prepared in situ from the di-t-butylester of the 5,5 -dicarboxylic acid (/), reacts with 4//-1,2,4-triazole-3,5-dialdehyde (3) in di-chloromethane in the presence of trifluoroacetic acid and 2,3-dichloro-5,6-dicyano-/)-benzoquino-ne as an oxidation reagent. Dark blue crystals are obtained after chromatographic purification. The dark violet chloroform solution fluoresces purple at 360 nm and gives the NMR experiments 39. Which compound and which tautomer of it has been formed ... [Pg.120]

Most of the compounds in this class have been prepared from preexisting crown ether units. By far, the most common approach is to use a benzo-substituted crown and an electrophilic condensation polymerization. A patent issued to Takekoshi, Scotia and Webb (General Electric) in 1974 which covered the formation of glyoxal and chloral type copolymers with dibenzo-18-crown-6. The latter were prepared by stirring the crown with an equivalent of chloral in chloroform solution. Boron trifluoride was catalyst in this reaction. The polymer which resulted was obtained in about 95% yield. The reaction is illustrated in Eq. (6.22). [Pg.278]

A solution of hydrazoic acid (prepared from about 30 g sodium azide) in ca. 200 ml chloroform is prepared in a well-ventilated hood. Cholesterol (15 g) is dissolved in the hydrazoic acid solution and 3.5 ml of triethylamine is added. The reaction mixture is then stirred at room temperature while 7 g of A-chlorosuccinimide is added. The reaction mixture is allowed to stand overnight and then the chloroform solution is washed successively with dilute sodium bisulfite, dilute soldium bicarbonate solutions and finally with water. The chloroform extract is then dried (Na2S04) and the solvent removed in vacuo. The residue is crystallized from ethanol to yield ca. 8.5 g of (101) in colorless needles mp 138-139°. The chloro azide is reduced to the aziridine by lithium aluminum hydride according to the foregoing procedure. [Pg.34]

A solution of 21 g (0.15 mole) of perbenzoic acid (Chapter 17, Section II) in 250 ml of chloroform is prepared in a 500-ml round-bottom flask. Styrene (15 g, 0.145 mole) is added, and the solution is maintained at 0° for 24 hours with frequent shaking during the first hour. At the end of the reaction period, only the slight excess of perbenzoic acid remains. The benzoic acid is extracted from the reaction mixture by washing several times with 10% sodium hydroxide solution. The solution is then washed with water and dried over anhydrous sodium sulfate. Fractional distillation gives 24-26 g (69-75%) of 1,2-epoxyethylbenzene, bp 101 /40 mm. [Pg.8]

The starting material for the above step may be prepared as follows 5 g (0.016 mol) of N -(p-methoxyphenyl)-p-chlorobenzhydrazide hydrochloride and 4.75 g (0.018 mol) of benzyl levulinoyloxyacetate were heated In 25 ml of glacial acetic acid for 3 hours at 80°C. The solvent was then evaporated off under vacuum. The residue was taken up in chloroform and the solution was washed neutral by shaking with sodium bicarbonate solution and thereafter with water. After drying the chloroform solution, this was subjected to chromatography on aluminium oxide, the eluate was concentrated by evaporation and the viscous oil remaining as residue was crystallized by adding ether. The compound melted at 94°-95 t. The yield was 4.1 g which corresponds to 50.7% of the theoretical yield. [Pg.10]

Preparation of Di-n-Propyl Acetyl Tropine Hydrochloride Tropine (11.12 grams) was dissolved in 100 ml of anhydrous pyridine and to this solution was added 15.64 grams of din-propyl acetyl chloride. The mixture was refluxed for 6 hours. This solution was then cooled and the pyridine removed in vacuo. The residue was dissolved in chloroform. The chloroform solution was washed with 10% hydrochloric acid to remove the residual trace of pyridine. The hydrochloride of the product ester is soluble in chloroform and is not extracted from chloroform by hydrochloric acid. This is an unexpected property. [Pg.96]

Preparation of 4-aza-S-(N-methyl-4-piperidyll-10,11-dihydro-SH-dibenzo[a,d]cycloheptene-S-ol Add 17.4 g of N-methyl-4-chloropiperidine to a stirred mixture containing 3.2 g of magnesium, 20 ml of anhydrous tetrahydrofuran, 1 ml of ethyl bromide and a crystal of iodine. Reflux for two hours, cool to 30°-35°C and add a solution of 13 g of 4-aza-10,11 -dihydro-5H-dibenzo[a,d] cycloheptene-5-one in 25 ml of tetrahydrofuran. Stir for five hours, remove the solvent by distillation in vacuo and add 250 ml of ether. Add 100 ml of 10% ammonium chloride solution and extract the mixture with chloroform. Concentrate the chloroform solution to a residue and recrystallize from isopropyl ether obtaining 20 g of the carbinol,... [Pg.118]

Preparation of 4-( -Chloroethyl)-3,3-Diphenyl-1Ethyl-2-Pyrrolidinone A solution of a,a -diphenyl-a -(1-ethyl-3-pyrrolidyl)-acetonitrile in 70% sulfuric acid was heated at 130°-140°C for 48 hours, poured onto ice, made basic with sodium hydroxide, and extracted with chloroform. The chloroform solution was acidified with hydrogen chloride gas, dried over sodium sulfate and concentrated. The residue was refluxed in 500 ml of thionyl chloride for 3 hours the resulting solution was concentrated in vacuo and the residue was crystallized from isopropyl ether. [Pg.537]

Preparation of Ethyl a-Acetylamino-a-Carbethoxy-0-f5-Benzyloxy-lndolyl-3l-Propionate 4-benzyloxyphenylhydrazine hydrochloride was converted to the corresponding base 2 to 3 hours before use 28 grams of the hydrochloride was suspended in 500 ml chloroform and shaken with 55 ml 2 N sodium hydroxide in 100 ml water. The chloroform was separated and the aqueous phase reextracted with chloroform (2 x 100 ml). After washing with 100 ml water, the chloroform Solution was dried over sodium sulfate, filtered and evaporated at 30° to 35°C, leaving 4-benzyloxyphenylhydrazlne as a friable buff-colored solid (23 grams, 97% from hydrochloride). [Pg.791]

The product is hydrogenated in 4,000 cc of ethanol at room temperature and under normal atmospheric pressure with a catalyst prepared In the usual manner from 400 g of Raney nickel alloy. The calculated amount of hydrogen is taken up in approximately 75 hours. After filtration and evaporation to a small volume, the residue Is distributed between 1,000 cc of chloroform and water each. The chloroform solution is then dried over sodium sulfate and evaporated to a small volume. Precipitation of the hydrogenation product with petroleum ether yields an amorphous white powder which Is filtered by suction, washed with petroleum ether and dried at 50°C In a high vacuum. 1. athyl-2-podophyllinic acid hydrazide is obtained in a practically quantitative yield. [Pg.1034]

Initially it was necessary to devise an improved method for the preparation of 2-hydroxyglycal esters, because the standard procedure (treatment of an acylglycosyl bromide with diethylamine in benzene or chloroform solution) was inconveniently lengthy in time and frequently afforded only a moderate yield of product (5). As a result of their recent thorough investigation of the kinetic features of the dehydrobromination of tetra-O-acetyl-a-D-glucopyranosyl bromide Lemieux and Lineback... [Pg.158]

Evaporation of a chloroform solution of benzoylhydroperoxide under reduced pressure yields a paste containing 20-30 per cent of hydroperoxide. On further evaporation this decomposes into benzoic acid. A chloroform solution of benzoylhydroperoxide when carefully dried over anhydrous sodium sulfate at o° may be kept exposed to light at room temperature for a number of days without appreciable decomposition. In order to obtain benzoylhydroperoxide free from the reagents used in its preparation, it is necessary to extract the product with chloroform, such extraction resulting in a loss of about 10 per cent,... [Pg.33]

The solution is cooled and then diluted with 450 cc. of water. The oily layer of chloronitrile is collected in about 80 cc. of chloroform and Separated from the water solution. The chloroform solution is washed with about 125-150CC. of calcium chloride solution (prepared by adding one volume of water to an equal volume of a saturated solution of crystallized calcium chloride) and once with 125-150 cc. of water, and then dried over fused calcium chloride. [Pg.52]

Procedure. Dissolve a suitable weight of the sample of lead in 6M nitric acid add a little 50 per cent aqueous tartaric acid to clear the solution if antimony or tin is present. Cool, transfer to a separatory funnel, and dilute to about 25 mL. Add concentrated ammonia solution to the point where the slight precipitate will no longer dissolve on shaking, then adjust the pH to 1, using nitric acid or ammonia solution. Add 1 mL freshly prepared 1 per cent cupferron solution, mix, and extract with 5 mL chloroform. Separate the chloroform layer, and repeat the extraction twice with 1 mL portions of cupferron solution + 5 mL of chloroform. Wash the combined chloroform extracts with 5mL of water. Extract the bismuth from the chloroform by shaking with two 10 mL portions of 1M sulphuric acid. Run the sulphuric acid solution into a 25 mL graduated flask. Add 3 drops saturated sulphur dioxide solution and 4 mL of 20 per cent aqueous potassium iodide. Dilute to volume and measure the transmission at 460 nm. [Pg.685]

Trimethylsilyl l//-azepine-f-carboxylate (4), prepared in 71 % yield by treating methyl 17/-azepine-1 -carboxylate with iodotrimethylsilane in chloroform at 20°C, with methanol in pentane solution at — 78 °C undergoes slow hydrolysis to the bright-yellow 17/-azepine-l-carboxylic acid (5),9 which is also obtained, as the potassium salt, by the action of potassium /ert-butoxide on ethyl 17/-azepine-l-carboxylate.139 The acid is stable at —78°C for several days but in chloroform solution at 20 °C undergoes decarboxylation to 17/-azepine (6) accompanied by some decomposition. 17/-Azepine is stable for a few hours at — 78 C and has been characterized by 3H and l3CNMR spectroscopy. [Pg.170]

Dichlorodibenzo-p-dioxin was prepared from isotopic potassium 2,4-dichlorophenate uniformly labeled with Ullman conditions gave a 20.5% yield. Small amounts of dichlorophenoxy chlorophenol were removed from the product by extraction with sodium hydroxide before purification by fractional sublimation and recrystallization from anisole. Chlorination of 2,7-dichlorodibenzo-p-dioxin in chloroform solution containing trace amounts of FeCls and 12 yielded a mixture of tri-, tetra-, and pentachloro substitution products. Purification by digestion in boiling chloroform, fractional sublimation, and recrystallization from anisole was effective in refining this product to 92% 2,3,7,8-tetrachloro isomer, which also contained 7% of the tri- and 1% of the penta-substituted dibenzo-p-dioxin. Mass spectroscopy was used exclusively to monitor the quality of the products during the synthesis. [Pg.1]

Ifi-Ditritiodihenzo- -dioxin, prepared by reductive dechlorination of 1,6-dichlorodihenzo-p-dioxin with tritium gas, is chlorinated in chloroform solution, containing catalytic amounts of iodine and ferric chloride, to produce 1,6-ditritio-2,3,7,8-tefrachlorodibenzo-p-dioxin. [Pg.7]


See other pages where Chloroform, solution preparation, with is mentioned: [Pg.304]    [Pg.156]    [Pg.286]    [Pg.294]    [Pg.318]    [Pg.169]    [Pg.627]    [Pg.932]    [Pg.163]    [Pg.218]    [Pg.18]    [Pg.59]    [Pg.37]    [Pg.70]    [Pg.307]    [Pg.820]    [Pg.41]    [Pg.69]    [Pg.684]    [Pg.1182]    [Pg.1560]    [Pg.236]    [Pg.58]    [Pg.71]    [Pg.36]    [Pg.384]    [Pg.20]    [Pg.76]   


SEARCH



Chloroform solution

Chloroform, solution preparation, with phenol

Chloroformate preparation

Preparation with

Solution preparing

With chloroform

With chloroformates

© 2024 chempedia.info