Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloroform, palladium

Diazomethane Isobutyl chloroformate Palladium on carbon Triethylamine... [Pg.503]

Valine methyl ester, (S)-, hydrochloride Benzyl chloroformate Palladium hydroxide... [Pg.2073]

Dissolve 7 g. of pure oleic acid in 30 ml. of dry ethyl chloride (chloroform may be used but is less satisfactory), and ozonise at about —30°. Remove the solvent under reduced pressure, dissolve the residue in 50 ml. of dry methyl alcohol and hydrogenate as for adipic dialdehyde in the presence of 0 5 g. of palladium - calcium carbonate. Warm the resulting solution for 30 minutes with a slight excess of semicarbazide acetate and pour into water. Collect the precipitated semicarbazones and dry the... [Pg.892]

Trichloroacetic acid K = 0.2159) is as strong an acid as hydrochloric acid. Esters and amides are readily formed. Trichloroacetic acid undergoes decarboxylation when heated with caustic or amines to yield chloroform. The decomposition of trichloroacetic acid in acetone with a variety of aUphatic and aromatic amines has been studied (37). As with dichloroacetic acid, trichloroacetic acid can be converted to chloroacetic acid by the action of hydrogen and palladium on carbon (17). [Pg.89]

Arsonium salts have found considerable use in analytical chemistry. One such use involves the extraction of a metal complex in aqueous solution with tetraphenyiarsonium chloride in an organic solvent. Titanium(IV) thiocyanate [35787-79-2] (157) and copper(II) thiocyanate [15192-76-4] (158) in hydrochloric acid solution have been extracted using tetraphenyiarsonium chloride in chloroform solution in this manner, and the Ti(IV) and Cu(II) thiocyanates deterrnined spectrophotometricaHy. Cobalt, palladium, tungsten, niobium, and molybdenum have been deterrnined in a similar manner. In addition to their use for the deterrnination of metals, anions such as perchlorate and perrhenate have been deterrnined as arsonium salts. Tetraphenyiarsonium permanganate is the only known insoluble salt of this anion. [Pg.339]

B. 2,2,7,7,12,12,17,17-Octemfi<%Z-21,22,23,24-t tfstainless-steel shaking autoclave is charged with 4.0 g. (0.0092 mole) of the tetraoxaquaterene from Part A, 200 ml. of ethanol, and 400 mg. of 5% palladium on charcoal catalyst (Note 6). The autoclave is filled with hydrogen at an initial pressure of 170 atm. and heated with shaking for 4 hours at 105 . Catalyst and a white solid are removed by filtration (Note 7), the solid is dissolved in 100 ml. of warm chloroform, the solution is filtered, the chloroform is evaporated, and the white solid which is obtained is dried under reduced pressure at 60° (Note 8). The tetraoxaperhydroquaterene is obtained as a white solid, m.p. 204-209 (Note 9), in a yield of 2.85-2.97 g. (69-72%). [Pg.75]

Phenacylpyridinium bromide (155) with aqueous sodium carbonate yields the chloroform soluble zwitterion (156) which, with dimethyl acetylenedicarboxylate in the presence of palladium on charcoal, cyclized to the indolizine (157) in ca. 20% yield. In a similar way the pyrazine (158) gave a mixture of (159) and (160) through loss of the benzoyl group. The last compound was also ob-... [Pg.164]

A mixture of 2.0 g (0.064 mol) of 2-fluoromethyl-3-(o-tolyl)-6-nitro-4(3H)-qulnazolinone, Oi g of 5% palladium-carbon and 100 ml of acetic acid is shaken for 30 minutes in hydrogen gas. The initial pressure of hydrogen gas is adjusted to 46 lb and the mixture is heated with an infrared lamp during the reaction. After 30 minutes of this reaction, the pressure of hydrogen gas decreases to 6 lb. After the mixture is cooled, the mixture is filtered to remove the catalyst. The filtrate is evaporated to remove acetic acid, and the residue is dissolved in chloroform. The chloroform solution is washed with 5% aqueous sodium hydroxide and water, successively. Then, the solution is dried and evaporated to remove solvent. The oily residue thus obtained is dissolved in 2 ml of chloroform, and the chloroform solution is passed through a column of 200 g of silica gel. The silica gel column is eluted with ethyl acetate-benzene (1 1). Then, the eluate is evaporated to remove solvent. The crude crystal obtained is washed with isopropylether and recrystallized from isopropanol. 0.95 g of 2-fluoromethyl-3-(o-tolyl)-6-amino-4(3H)-quinazolinone Is obtained. Yield 52.5% MP 195°-196°C. [Pg.30]

Acetone is the best solvent for NBR hydrogenation in the presence of palladium carboxylates. No hydrogenation is achieved when chloroform or chlorobenzene are the solvents. Since it is understood that palladium is reduced to colloidal metal in the presence of hydrogen, attempts have also been made to reduce the palladium by hydrazine [76], methylaluminoxane [84], and trialky] aluminum [85] to improve the catalytic activity. [Pg.565]

Dimethylglyoxime. The complexes with nickel and with palladium are soluble in chloroform. The optimum pH range for extraction of the nickel complex is 4-12 in the presence of tartrate and 7-12 in the presence of citrate (solubility 35-50 fig Ni mL 1 at room temperature) if the amount of cobalt exceeds 5 mg some cobalt may be extracted from alkaline solution. Palladium(II) may be extracted out of ca lM-sulphuric acid solution. [Pg.170]

The reaction is a sensitive one, but is subject to a number of interferences. The solution must be free from large amounts of lead, thallium (I), copper, tin, arsenic, antimony, gold, silver, platinum, and palladium, and from elements in sufficient quantity to colour the solution, e.g. nickel. Metals giving insoluble iodides must be absent, or present in amounts not yielding a precipitate. Substances which liberate iodine from potassium iodide interfere, for example iron(III) the latter should be reduced with sulphurous acid and the excess of gas boiled off, or by a 30 per cent solution of hypophosphorous acid. Chloride ion reduces the intensity of the bismuth colour. Separation of bismuth from copper can be effected by extraction of the bismuth as dithizonate by treatment in ammoniacal potassium cyanide solution with a 0.1 per cent solution of dithizone in chloroform if lead is present, shaking of the chloroform solution of lead and bismuth dithizonates with a buffer solution of pH 3.4 results in the lead alone passing into the aqueous phase. The bismuth complex is soluble in a pentan-l-ol-ethyl acetate mixture, and this fact can be utilised for the determination in the presence of coloured ions, such as nickel, cobalt, chromium, and uranium. [Pg.684]

GIDYOH Bis(l,3-diethylimidazolidine-2-thione-4,5-dithionato)-palladium diiodine chloroform solvate 2.874 2.811 179.61 A... [Pg.86]

Conjugated boron polymers containing platimnn or palladium atom in the main chain were also prepared by hydroboration polymerization between tetrayne/ metal complex monomers and tripylborane (scheme 16).30 From gel permeation chromatographic analysis [THF, polystyrene (PSt) standards], the number-average molecular weights of the polymers obtained were found to be 9000. The polymers were soluble in common organic solvents such as THF, chloroform, and benzene. The absorption peaks due to tt-tt transition were observed around 390 nm in the UV-vis spectra of these polymers. The fluorescence emission spectra exhibited intense peaks at 490 nm in chloroform. [Pg.149]

The diester 226 undergoes ring-closure to the methylenecyclopentane derivative 227 in the presence of a catalytic amount of chlorotris(triphenylphosphine)rhodium in boiling chloroform saturated with hydrogen chloride. In contrast, if the reaction is catalysed by palladium(II) acetate, the isomeric cyclopentene 228 is produced (equation 115)118. [Pg.540]

Terminal allenes.1 A synthesis of 1,2-dienes (3) from an aldehyde or a ketone involves addition of ethynylmagnesium bromide followed by reaction of the adduct with methyl chloroformate. The product, a 3-methoxycarbonyloxy-l-alkyne (2), can be reduced to an allene by transfer hydrogenolysis with ammonium formate catalyzed by a zero-valent palladium complex of 1 and a trialkylphosphine. The choice of solvent is also important. Best results are obtained with THF at 20-30° or with DMF at 70°. [Pg.339]

D. 4a(S),8a(R)-2-Benzoyloctahydro-6(2H)-isoquinolinone (4). Palladium (Pd), 10% on carbon, 4.0 g, (Note 21) is placed in a 500-mL Parr bottle under N2 and carefully wetted with 50 mL of cold denatured ethanol (EtOH). A slurry of 34.7 g of enone 3 (0.14 mol) in denatured EtOH (250 mL) is added and the Parr shaker apparatus assembled. After the system is purged with nitrogen-hydrogen (N2/H2), the reaction is shaken at 50 psi H2 and 50°C until H2 uptake is complete (1 hr, Note 22). The catalyst is filtered over a Celite pad (Note 23) and rinsed with warm chloroform (CHCI3) (4 x 75 mL). The filtrate is concentrated under reduced pressure, dissolved in 90 mL of CH2CI2 and crystallized with 200 mL of hexanes. The crystalline solid is filtered, rinsed with hexanes and dried to afford 34.3 g (98%, Note 24) of the ketone 4, representing a 51% yield over four steps. [Pg.114]

On the other hand, the use of [Rh(CO)2Cl]2 as a catalyst results in ring opening of the siloxycyclopropanes 13 to the silyl enol ethers 14 with high stereoselectivity [10]. The 2-siloxyrhodacyclobutane 15a is proposed to undergo j8-elimination to give jr-allylrhodium 16a followed by reductive elimination to the silyl enol ether 14a. 1-Trimethylsiloxybicyclo[n.l.0]alkanes serve as / -metallo-carbonyl compounds via desilylation with a variety of transition metals [11]. The palladium-catalyzed reaction of the siloxycyclopropanes 17 under carbon monoxide in chloroform provides a route to the 4-keto pimelates 18. In the presence of aryl triflates, the 1,4-dicarbonyl compounds 19 are... [Pg.102]

A double bond in the 7,8-(VI) or 8,9-(VII) position of a steroid which has the trans A/B ring configuration isomerizes to the 8,14 position (VIII) when treated with hydrogen and a palladium catalyst or platinum in the presence of acetic acid (69) (Fig. 12). Once the double bond reaches the 8,14 position it cannot be hydrogenated however it may be isomerized by treatment with HCl in chloroform to yield a isomer which can be reduced catalytically. [Pg.143]

Cross-coupling of terminal alkynes with aryl and vinyl halides are usually carried out in organic solvents, such as benzene, dimethylformamide or chloroform with a palladium-based catalyst and a base scavenger for the hydrogen halide. Copper(I) iodide is a particularly effective co-catalyst allowing the reaction to proceed under mild conditions. [Pg.173]

N-Acetyl-4-amino-2,5-dimethoxyamphetamine Hydrochloride. A solution of 39 g ofN-acetyl-2,5-dimethoxy-4-nitrophenylisopropylamine in ethanol is hydrogenated over 10% palladium-charcoal (1.0 g) until the theoreticd amount of hydrogen is absorbed (3 days). The catalyst is removed and the filtrate evaporated. The residue is suspended in 5% sodium hydroxide solution (100 ml) and extracted with chloroform (3 times 100 ml). The combined chloroform extracts are evaporated and the remaining solid is dissolved in dry ether. When dry hydrogen chloride is passed through this solution, the title compound precipitates and is recrystallized from ethanol-ether. Yield 31.5 g, mp 237-239°. [Pg.48]

A mixture of the last product (1.0 g) and 10 g of palladium carbon (5%), in 35 ml of xylene, is heated under reflux for 4 hours. The catalyst is filtered and extracted with hot methanol and chloroform. The combined extract filtrates and the initial filtrate are combined and evaporated in vacuo. The residue is recrystallized from water to give 0.6 g of a monohydrate product that melts at 255-256°. This product is called 4-acetyl-4,5,5a,6-tetrahydro-9-hydroxy-7-methylindolo-(4,3fg)- quinolinium hydroxide betaine. [Pg.56]

The high-pressure carbonylation of dimeric palladium derivatives 183 (R = Me or cyclopropyl) in ethanol or methanol/ chloroform leads in moderate yields to fused isoindoles 184 as mixtures with their alkoxy derivatives 185, easily separated by flash chromatography (Equation (25) a991JOM371)). [Pg.30]


See other pages where Chloroform, palladium is mentioned: [Pg.271]    [Pg.271]    [Pg.271]    [Pg.271]    [Pg.163]    [Pg.81]    [Pg.105]    [Pg.566]    [Pg.199]    [Pg.154]    [Pg.76]    [Pg.49]    [Pg.160]    [Pg.944]    [Pg.295]    [Pg.40]    [Pg.109]    [Pg.204]    [Pg.568]    [Pg.59]    [Pg.202]    [Pg.396]    [Pg.41]    [Pg.34]    [Pg.90]    [Pg.69]    [Pg.69]    [Pg.84]    [Pg.406]   


SEARCH



Chloroform, palladium complexes with

Homoallyl chloroformates palladium complexes

Palladium dipalladium-chloroform

© 2024 chempedia.info