Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorine vinyl chloride

Chlorinated vinyl chloride-based compositions composed from chlorinated poly(ethylene) and MMBS are suitable for injection molding products with good heat resistance, impact strength, mold-ability, and surface properties (20). [Pg.321]

T. Suzuki, Chlorinated vinyl chloride resin composition, US Patent 7332544, assigned to Kaneka Corporation (Osaka, JP), February 19, 2008. [Pg.329]

Akzo Nobel is an important producer of chlorine, vinyl chloride and PVC, strongly interested in a process for feedstock recycling of MPW containing PVC. Since 1994 they have chosen a fast pyrolysis process in a circulating fluidized-bed reactor, based on the technique developed by the Battelle Memorial Institute (CO, USA) for biomass gasification. [Pg.468]

Pulmonary agents phosgene, chlorine, vinyl chloride... [Pg.120]

Figure 5.2, also taken from Schwarz et al. [21], illustrates how metrics for ethylene, chlorine, vinyl chloride and poly(vinyl chloride) (PVC) can be stacked to obtain metrics for the production of PVC, beginning with naphtha and brine. The metrics calculated with the mass denominator can be readily combined. Impact per dollar can also be calculated for a supply chain by combining the single values along the chain in... [Pg.287]

Vinyl chloride, chlorinated Vinyl chloride Single Tg Up to 61.3 or 65.2 % Cl in 1 with dependence on mol% CCI2 groups Carmoin et al. (1977), Lehr (1985, 1986)... [Pg.2063]

PE CE n. Post-chlorinated vinyl chloride polymer. The post-chlorination process increases chlorine content form 57 to 64%. The resulting polymer is soluble in... [Pg.700]

As an example, consider again the manufacture of vinyl chloride. In the first step of this process, ethylene and chlorine are reacted to form dichloroethane ... [Pg.285]

A fiowsheet for this part of the vinyl chloride process is shown in Fig. 10.5. The reactants, ethylene and chlorine, dissolve in circulating liquid dichloroethane and react in solution to form more dichloroethane. Temperature is maintained between 45 and 65°C, and a small amount of ferric chloride is present to catalyze the reaction. The reaction generates considerable heat. [Pg.285]

Figure 10.5 The direct chlorination step of the vinyl chloride process using a liquid phase reactor. (From McNaughton, Chem. Engg., December 12, 1983, pp. 54-58 reproduced by permission.)... Figure 10.5 The direct chlorination step of the vinyl chloride process using a liquid phase reactor. (From McNaughton, Chem. Engg., December 12, 1983, pp. 54-58 reproduced by permission.)...
The rather unreactive chlorine of vinyl chloride can be displaced with nucleophiles by the catalytic action of PdCb. The conversion of vinyl chloride to vinyl acetate (797) has been studied extensively from an industrial standpoint[665 671]. DMF is a good solvent. 1,2-Diacetoxyethylene (798) is obtained from dichloroethylene[672]. The exchange reaction suffers steric hindrance. The alkenyl chloride 799 is displaced with an acetoxy group whereas 800 and 801 cannot be displaccd[673,674]. Similarly, exchange reactions of vinyl chloride with alcohols and amines have been carried out[668]. [Pg.246]

Poly(vinyl chloride) and poly(vinyl acetate) Poly(vinyl chloride), 15% glass-fiber-reinforced Chlorinated poly(vinyl chloride) Poly(vinyl butyral), flexible ... [Pg.1060]

Because of its relatively high, price, there have been continuing efforts to replace acetylene in its major appHcations with cheaper raw materials. Such efforts have been successful, particularly in the United States, where ethylene has displaced acetylene as raw material for acetaldehyde, acetic acid, vinyl acetate, and chlorinated solvents. Only a few percent of U.S. vinyl chloride production is still based on acetylene. Propjiene has replaced acetylene as feed for acrylates and acrylonitrile. Even some recent production of traditional Reppe acetylene chemicals, such as butanediol and butyrolactone, is based on new raw materials. [Pg.102]

This route has been completely displaced, first by chlorination and dehydro-chlorination of ethylene or vinyl chloride, and more recendy by oxychlorination of two-carbon raw materials (2) (see Chlorocarbonsandchlorohydrocarbons). [Pg.102]

Once the principal route to vinyl chloride, in all but a few percent of current U.S. capacity this has been replaced by dehydrochlorination of ethylene dichloride. A combined process in which hydrogen chloride cracked from ethylene dichloride was added to acetylene was advantageous but it is rarely used because processes to oxidize hydrogen chloride to chlorine with air or oxygen are cheaper (7) (see Vinyl polymers). [Pg.102]

In similar fashion, vinylidene chloride [75-35-4], C2H2CI2, has been prepared by successive chlorination and dehydrochlorination of vinyl chloride... [Pg.102]

Chlorine cannot be stored economically or moved long distances. International movements of bulk chlorine are more or less limited to movements between Canada and the United States. In 1987, chlorine moved in the form of derivatives was 3.3 million metric tons or approximately 10% of total consumption (3). Exports of ethylene dichloride, vinyl chloride monomer, poly(vinyl chloride), propylene oxide, and chlorinated solvents comprise the majority of world chlorine movement. Countries or areas with a chlorine surplus exported in the form of derivatives include Western Europe, Bra2il, USA, Saudi Arabia, and Canada. Countries with a chlorine deficit are Taiwan, Korea, Indonesia, Vene2uela, South Africa, Thailand and Japan (3). [Pg.478]

Chlorine reacts with saturated hydrocarbons either by substitution or by addition to form chlorinated hydrocarbons and HCl. Thus methanol or methane is chlorinated to produce CH Cl, which can be further chlorinated to form methylene chloride, chloroform, and carbon tetrachloride. Reaction of CI2 with unsaturated hydrocarbons results in the destmction of the double or triple bond. This is a very important reaction during the production of ethylene dichloride, which is an intermediate in the manufacture of vinyl chloride ... [Pg.510]

Calcium carbide has been used in steel production to lower sulfur emissions when coke with high sulfur content is used. The principal use of carbide remains hydrolysis for acetylene (C2H2) production. Acetylene is widely used as a welding gas, and is also a versatile intermediate for the synthesis of many organic chemicals. Approximately 450,000 t of acetylene were used aimuaHy in the early 1960s for the production of such chemicals as acrylonitrile, acrylates, chlorinated solvents, chloroprene, vinyl acetate, and vinyl chloride. Since then, petroleum-derived olefins have replaced acetylene in these uses. [Pg.166]

Molybdenum trioxide is a condensed-phase flame retardant (26). Its decomposition products ate nonvolatile and tend to increase chat yields. Two parts of molybdic oxide added to flexible poly(vinyl chloride) that contains 30 parts of plasticizer have been shown to increase the chat yield from 9.9 to 23.5%. Ninety percent of the molybdenum was recovered from the chat after the sample was burned. A reaction between the flame retardant and the chlorine to form M0O2 012 H20, a nonvolatile compound, was assumed. This compound was assumed to promote chat formation (26,27). [Pg.458]

Poly(vinyl chloride). PVC is a hard, brittle polymer that is self-extinguishing. In order to make PVC useful and more pHable, plasticizers (qv) are added. More often than not the plasticizers are flammable and make the formulation less flame resistant. Flammability increases as the plasticizer is increased and the relative amount of chlorine decreased, as shown in Table 7. The flame resistance of the poly(vinyl chloride) can be increased by the addition of an inorganic flame-retardant synergist. [Pg.459]

Heat stabilizers protect polymers from the chemical degrading effects of heat or uv irradiation. These additives include a wide variety of chemical substances, ranging from purely organic chemicals to metallic soaps to complex organometaUic compounds. By far the most common polymer requiring the use of heat stabilizers is poly(vinyl chloride) (PVC). However, copolymers of PVC, chlorinated poly(vinyl chloride) (CPVC), poly(vinyhdene chloride) (PVDC), and chlorinated polyethylene (CPE), also benefit from this technology. Without the use of heat stabilizers, PVC could not be the widely used polymer that it is, with worldwide production of nearly 16 million metric tons in 1991 alone (see Vinyl polymers). [Pg.544]

Of the estimated 710,000 t consumed in 1990, 25% was used to produce vinyl chloride [75-01-4] monomer (VCM), 14% for vinyl acetate [108-05-4] monomer (VAM), 23% for butanediol, 14% for industrial use, and the balance to produce other products such as acryUc acid, synthetic mbber, chlorinated solvents, and acetylene black. The demand for PVC is expected to decrease as legislation limiting its use in packaging is pending. Consequentiy, VCM consumption will also suffer. [Pg.395]

Acetylene and hydrogen chloride historically were used to make chloroprene [126-99-8]. The olefin reaction is used to make ethyl chloride from ethylene and to make 1,1-dichloroethane from vinyl chloride. 1,1-Dichloroethane is an intermediate to produce 1,1,1-trichloroethane by thermal (26) or photochemical chlorination (27) routes. [Pg.444]


See other pages where Chlorine vinyl chloride is mentioned: [Pg.14]    [Pg.121]    [Pg.361]    [Pg.304]    [Pg.4897]    [Pg.1328]    [Pg.12]    [Pg.12]    [Pg.14]    [Pg.121]    [Pg.361]    [Pg.304]    [Pg.4897]    [Pg.1328]    [Pg.12]    [Pg.12]    [Pg.92]    [Pg.93]    [Pg.404]    [Pg.420]    [Pg.196]    [Pg.31]    [Pg.231]    [Pg.477]    [Pg.509]    [Pg.510]    [Pg.517]    [Pg.545]    [Pg.393]    [Pg.444]    [Pg.446]   
See also in sourсe #XX -- [ Pg.169 , Pg.171 , Pg.172 , Pg.180 ]




SEARCH



Chlorides chlorination

Chlorine chloride

Chlorine vinyl chloride monomer process

Photodehydrochlorination of chlorinated poly(vinyl chloride)

Vinyl chloride

Vinylic chlorides

© 2024 chempedia.info