Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorine destruction

The chlorine liquefaction plant comprises a bromine-removal column, a compression-condensation unit and a Tetra absorption/distillation unit (Fig. 14.2). Waste streams of chlorine are absorbed in diluted cell-liquor in the chlorine destruction area. As a result, the destruction liquid contains sodium chloride and less sodium hydroxide than is usual. Bromine from the bromine-removal column is also added to the chlorine destruction unit. The hypochlorite solution that is formed contains a reasonable amount of bromine and salts. However, it is a hypochlorite of non-marketable quality. [Pg.188]

Hypochlorite and hypobromite formed in the chlorine destruction unit are subse-... [Pg.188]

There are several crucial steps in the process of recycling hypochlorite solution. First, hypochlorite is formed in the chlorine destruction where chlorine reacts with the sodium hydroxide solution. This solution is added to the brine-degassing unit. Partial conversion to chlorate and bromate takes place, which continues in the anolyte... [Pg.190]

In addition, a vent-gas pipe leading from the degassing tanks to the chlorine destruction unit was put in place, since addition of hydrochloric acid to the brine (pH = 5) results in the evolution of carbon dioxide and some chlorine. [Pg.192]

An additional advantage of the hypochlorite recycling process is the chlorination of the feed brine in the brine-degassing unit. Organic and nitrogen-containing components are oxidised. The reaction products are removed via the vent-gas to the chlorine destruction unit. Less NCI3 is formed in the electrolysis cells because part of the... [Pg.193]

Recycling the hypochlorite to the feed brine has provided an excellent possibility of eliminating completely the chlorate and bromate emissions of the chlorine destruction unit of a diaphragm electrolysis plant. The main advantage of the hypochlorite recycling and cathodic reduction procedure is the reduction of bromate to bromide. [Pg.194]

An additional advantage is the oxidation of all organic and nitrogen-containing components of the brine in the brine degassing tanks. These impurities are not fed to the electrolysis cells, but the products removed to the chlorine destruction unit and incinerator. Control of NCI3 concentrations in chlorine liquefaction has become easier. [Pg.195]

The hypochlorite produced has an active chlorine concentration of 160-180 g l-1 and a free caustic concentration of 4-8 g l-1. Figure 25.1 illustrates the simplified layout of the two-step chlorine destruction unit. All measurements are carried out under steady-state conditions under different peak loads of chlorine. [Pg.320]

During chlorination, destruction of the colouring matter and further decomposition of other substances accompanying the cellulose proceeds, all these substances being oxidized by chlorine or hypochlorite. [Pg.363]

It was not their reactivity but their chemical inertness that was the true surprise when diazirines were discovered in 1960. Thus they are in marked contrast to the known linear diazo compounds which are characterized by the multiplicity of their reactions. For example, cycloadditions were never observed with the diazirines. Especially surprising is the inertness of diazirines towards electrophiles. Strong oxidants used in their synthesis like dichromate, bromine, chlorine or hypochlorite are without action on diazirines. Diazirine formation may even proceed by oxidative dealkylation of a diaziridine nitrogen in (186) without destruction of the diazirine ring (75ZOR2221). The diazirine ring is inert towards ozone simple diazirines are decomposed only by more than 80% sulfuric acid (B-67MI50800). [Pg.220]

SW-846, is used to measure emissions of semivolatile principal organic constituents. Method 0010 is designed to determine destruction and removal efficiency (DRE) of POHCs from incineration systems. The method involves a modification of the EPA Method 5 sampling train and may be used to determine particulate emission rates from stationary sources. The method is applied to semivolatile compounds, including polychlorinated biphenyls (PCBs), chlorinated dibenzodioxins and dibenzofurans, polycyclic organic matter, and other semivolatile organic compounds. [Pg.2207]

The chlorine atoms would provide another destruction pathway for ozone in addition to (11-3), shifting the steady-state ozone to a lower value. Because of the catalytic nature of Eqs. (11-5) and (11-6), one chlorine atom destroys many ozone molecules. [Pg.160]

Thermal processes are typically used for highly toxic waste or highly concentrated organic wastes. If the waste contains PCB, dioxins, or other toxic substances, incineration should be chosen in order to assure destruction. If the wastes contain greater than 1000 parts per million of halogens (chlorinated materials), it would probably be desirable to select incineration of these wastes, after consideration of other options. In any case, a material may be incinerated or used as a fuel if the heat content is greater than 8500 BTUs per pound or, if between 2500 and 8500, it may be incinerated with auxiliary fuel. The waste components of concern are halogens, alkali metals and heavy metals. [Pg.159]

In order to ensure the destruction of pathogens, the process of chlorination must achieve certain control of at least one factor and, preferably two, to compensate for fluctuations that occur. For this reason, some authorities on the subject stress the fact that the type and concentration of the chlorine residual must be controlled to ensure adequate disinfection. Only this way, they claim, can chlorination adequately take into account variations in temperature, pH, chlorine demand and types of organisms in the water. While possible to increase minimum contact times, it is difficult to do so. Five to ten minutes is normally all the time available with the type of pressure systems normally used for small water supplies. Many experts feel that satisfactory chlorine residual alone can provide adequate control for disinfection. In their opinion, superchlorination-dechlorination does the best job. Briefly, what is this technique and how does it operate ... [Pg.48]

The minimum residuals required for cyst destruction and inactivation of viruses are much greater. Although chlorine residuals in Table 4 are generally adequate, surface waters from polluted waterways are usually treated with much heavier chlorine dosages. Ordinary chlorination will destroy all strains of coli, aerogenes, pyocyaneae, typhsa, and dysenteria. [Pg.469]

In the atmosphere, ozone is attacked by chlorine atoms primarily introduced via polutants. The destruction of ozone is self-sustaining via these reactions ... [Pg.137]

Compute the enthalpy change for the destruction of ozone by atomic chlorine by subtracting the dissociation energies of O2 and CIO from the dissociation energy for ozone. What model chemistry is required for accurate modeling of each phase of this process The experimental values are given below (in kcal-moT ) ... [Pg.137]

Advoncsd Exorcise 7,2 aona Destruction by Atomic Chlorine Revisited... [Pg.159]

This technique cannot be applied to reactions which do not happen to be isodesmic (for example, destruction of ozone by atomic chlorine). [Pg.183]

Despite their instability (or perhaps because of it) the oxides of chlorine have been much studied and some (such as CI2O and particularly CIO2) find extensive industrial use. They have also assumed considerable importance in studies of the upper atmosphere because of the vulnerability of ozone in the stratosphere to destruction by the photolysis products of chlorofluorocarbons (p. 848). The compounds to be discussed are ... [Pg.844]

Catalytic reduction of thiophenes over cobalt catalysts leads to thiolane derivatives, or hydrocarbons. " Noncatalytic reductions of thiophenes by sodium or lithium in liquid ammonia leads, via the isomeric dihydrothiophenes, to complete destructions of the ring system, ultimately giving butenethiols and olefins. " Exhaustive chlorination of thiophene in the presence of iodine yields 2,2,3,4,5,5,-hexachloro-3-thiolene, Pyrolysis of thiophene at 850°C gives a... [Pg.104]

Atmospheres polluted by oxidising agents, e.g. ozone, chlorine, peroxide, etc. whose great destructive power is in direct proportion to the temperature, are also encountered. Sulphuric acid, formed by sulphur dioxide pollution, will accelerate the breakdown of paint, particularly oil-based films. Paint media resistant both to acids, depending on concentration and temperature, and oxidation include those containing bitumen, acrylic resins, chlorinated or cyclised rubber, epoxy and polyurethane/coal tar combinations, phenolic resins and p.v.c. [Pg.611]


See other pages where Chlorine destruction is mentioned: [Pg.357]    [Pg.357]    [Pg.357]    [Pg.191]    [Pg.194]    [Pg.188]    [Pg.188]    [Pg.188]    [Pg.105]    [Pg.357]    [Pg.357]    [Pg.357]    [Pg.191]    [Pg.194]    [Pg.188]    [Pg.188]    [Pg.188]    [Pg.105]    [Pg.286]    [Pg.13]    [Pg.26]    [Pg.218]    [Pg.204]    [Pg.475]    [Pg.47]    [Pg.449]    [Pg.464]    [Pg.465]    [Pg.470]    [Pg.1092]    [Pg.159]    [Pg.357]    [Pg.962]   
See also in sourсe #XX -- [ Pg.176 , Pg.177 ]




SEARCH



Chlorine ozone destruction

Ozone Destruction by Atomic Chlorine

© 2024 chempedia.info