Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloride ions formation

Martin and associates [124, 125] have studied the dehalogenation of CHC13 in boiling methanol by Schiff-base complexes of some transition metals in the presence of TMEDA. The kinetics of chloride ion formation has been measured without characterizing the organic products. Nahar and Mukhedkar [126, 127] found that the reactivities of related Schiff-base complexes in the above reaction decreased in the order Pd>Pt>Ni>Cu>Zn. [Pg.533]

In activity tests, sections of the Zn composite were used as agitation paddles in a batch reactor and compared to granular zinc, which was loaded into a similar vessel with an inert agitator (Fig. 23). The reactors were charged with 1 L of water and sparged with nitrogen to remove dissolved oxygen. TCE was then added to a concentration of 1(X)0 ppm. A chloride selective electrode was used to monitor chloride ion formation as a function of reaction time. First order kinetics were assumed, and rate constants were calculated per mass of Zn. [Pg.45]

Figures 6, 7 and 8 show the changes in the PCE concentration with reaction time. In the blank experiment without Ti02 and the light(Fig. 6) 5% decrease of PCE was observed afterh reaction, but no detectable amount of chloride ion could be observed. The absence of chloride ion formation suggests that the decrease of PCE by 5% is not due to a chemical degradation. The decrease of PCE seems to be due to the volatilization of PCE from the aqueous phase into the head space of the reactor as a result of the continuous magnetic stirring. Figures 6, 7 and 8 show the changes in the PCE concentration with reaction time. In the blank experiment without Ti02 and the light(Fig. 6) 5% decrease of PCE was observed afterh reaction, but no detectable amount of chloride ion could be observed. The absence of chloride ion formation suggests that the decrease of PCE by 5% is not due to a chemical degradation. The decrease of PCE seems to be due to the volatilization of PCE from the aqueous phase into the head space of the reactor as a result of the continuous magnetic stirring.
In electrolytes that are extremely poor in chloride ions, formation of ozone must be considered as a side reaction. Often, the standard DPD test for chlorine analysis shows higher values than expected [21]. Further research is still necessary. Application of MIO anodes under these conditions is highly risky because the obtained by-product spectrum can be contrary to rules for drinking water. Some researchers have studied the disinfection effect... [Pg.338]

A/ij the lattice energy of sodium chloride this is the heat liberated when one mole of crystalline sodium chloride is formed from one mole of gaseous sodium ions and one mole of chloride ions, the enthalpy of formation of sodium chloride. [Pg.74]

The anhydrous chloride is prepared by standard methods. It is readily soluble in water to give a blue-green solution from which the blue hydrated salt CuClj. 2H2O can be crystallised here, two water molecules replace two of the planar chlorine ligands in the structure given above. Addition of dilute hydrochloric acid to copper(II) hydroxide or carbonate also gives a blue-green solution of the chloride CuClj but addition of concentrated hydrochloric acid (or any source of chloride ion) produces a yellow solution due to formation of chloro-copper(ll) complexes (see below). [Pg.410]

The Lewis bases that react with electrophiles are called nucleophiles ( nucleus seek ers ) They have an unshared electron pair that they can use m covalent bond formation The nucleophile m Step 3 of Figure 4 6 is chloride ion... [Pg.157]

The transition state for this step involves partial bond formation between tert butyl cation and chloride ion... [Pg.158]

Silver Chloride. Silver chloride, AgCl, is a white precipitate that forms when chloride ion is added to a silver nitrate solution. The order of solubility of the three silver halides is Cl" > Br" > I. Because of the formation of complexes, silver chloride is soluble in solutions containing excess chloride and in solutions of cyanide, thiosulfate, and ammonia. Silver chloride is insoluble in nitric and dilute sulfuric acid. Treatment with concentrated sulfuric acid gives silver sulfate. [Pg.89]

Qualitative. The classic method for the quaUtative determination of silver ia solution is precipitation as silver chloride with dilute nitric acid and chloride ion. The silver chloride can be differentiated from lead or mercurous chlorides, which also may precipitate, by the fact that lead chloride is soluble ia hot water but not ia ammonium hydroxide, whereas mercurous chloride turns black ia ammonium hydroxide. Silver chloride dissolves ia ammonium hydroxide because of the formation of soluble silver—ammonia complexes. A number of selective spot tests (24) iaclude reactions with /)-dimethy1amino-henz1idenerhodanine, ceric ammonium nitrate, or bromopyrogaHol red [16574-43-9]. Silver is detected by x-ray fluorescence and arc-emission spectrometry. Two sensitive arc-emission lines for silver occur at 328.1 and 338.3 nm. [Pg.91]

Bromine is moderately soluble in water, 33.6 g/L at 25°C. It gives a crystalline hydrate having a formula of Br2 <7.9H2 O (6). The solubiUties of bromine in water at several temperatures are given in Table 2. Aqueous bromine solubiUty increases in the presence of bromides or chlorides because of complex ion formation. This increase in the presence of bromides is illustrated in Figure 1. Kquilibrium constants for the formation of the tribromide and pentabromide ions at 25°C have been reported (11). [Pg.279]

Ghlorohydrination with Nonaqueous Hypochlorous Acid. Because the presence of chloride ions has been shown to promote the formation of the dichloro by-product, it is desirable to perform the chlorohydrination in the absence of chloride ion. For this reason, methods have been reported to produce hypochlorous acid solutions free of chloride ions. A patented method (48) involves the extraction of hypochlorous acid with solvents such as methyl ethyl ketone [78-93-3J, acetonitrile, and ethyl acetate [141-78-6J. In one example hypochlorous acid was extracted from an aqueous brine with methyl ethyl ketone in a 98.9% yield based on the chlorine used. However, when propylene reacted with a 1 Af solution of hypochlorous acid in either methyl ethyl ketone or ethyl acetate, chlorohydrin yields of only 60—70% were obtained (10). [Pg.74]

Figure 1 illustrates the complexity of the Cr(III) ion in aqueous solutions. The relative strength of anion displacement of H2O for a select group of species follows the order perchlorate < nitrate < chloride < sulfate < formate < acetate < glycolate < tartrate < citrate < oxalate (12). It is also possible for any anion of this series to displace the anion before it, ie, citrate can displace a coordinated tartrate or sulfate anion. These displacement reactions are kineticaHy slow, however, and several intermediate and combination species are possible before equiUbrium is obtained. [Pg.135]

Other ions, eg, ferrate, chloride, and formate, are determined by first removing the cyanide ion at ca pH 3.5 (methyl orange end point). Iron is titrated, using thioglycolic acid, and the optical density of the resulting pink solution is measured at 538 nm. Formate is oxidized by titration with mercuric chloride. The mercurous chloride produced is determined gravimetricaHy. Chloride ion is determined by a titration with 0.1 Ai silver nitrate. The end point is determined electrometricaHy. [Pg.384]

Benzimidazole 3-oxides, e.g. (189), react with phosphorus oxychloride or sulfuryl chloride to form the corresponding 2-chlorobenzimidazoles. The reaction sequence involves first formation of a nucleophilic complex (190), then attack of chloride ions on the complex, followed by rearomatization involving loss of the fV-oxide oxygen (191 -> 192). [Pg.66]

In sea water with a pH of 8, crevice pH may fall helow 1 and chloride concentration can be many times greater than in the water. The crevice environment becomes more and more corrosive with time as acidic anions concentrate within. Areas immediately adjacent to the crevice receive ever-increasing numbers of electrons from the crevice. Hydroxyl ion formation increases just outside the crevice—locally increasing pH and decreasing attack there (Reaction 2.2). Corrosion inside the crevice becomes more severe with time due to the spontaneous concentration of acidic anion. Accelerating corrosion is referred... [Pg.15]

Electrical conductivity is of interest in corrosion processes in cell formation (see Section 2.2.4.2), in stray currents, and in electrochemical protection methods. Conductivity is increased by dissolved salts even though they do not take part in the corrosion process. Similarly, the corrosion rate of carbon steels in brine, which is influenced by oxygen content according to Eq. (2-9), is not affected by the salt concentration [4]. Nevertheless, dissolved salts have a strong indirect influence on many local corrosion processes. For instance, chloride ions that accumulate at local anodes can stimulate dissolution of iron and prevent the formation of a film. Alkali ions are usually regarded as completely harmless, but as counterions to OH ions in cathodic regions, they result in very high pH values and aid formation of films (see Section 2.2.4.2 and Chapter 4). [Pg.34]

During the next fifty years the interest in derivatives of divalent carbon was mainly confined to methylene (CHg) and substituted methylenes obtained by decomposition of the corresponding diazo compounds this phase has been fully reviewed by Huisgen. The first convincing evidence for the formation of dichlorocarbene from chloroform was presented by Hine in 1950. Kinetic studies of the basic hydrolysis of chloroform in aqueous dioxane led to the suggestion that the rate-determining step was loss of chloride ion from the tri-chloromethyl anion which is formed in a rapid pre-equilibrium with hydroxide ions ... [Pg.58]

Even polyalkoxy-s-triazines are quite prone to nucleophilic substitution. For example, 2,4,6-trimethoxy-s-triazine (320) is rapidly hydrolyzed (20°, dilute aqueous alkali) to the anion of 4,6-dimethoxy-s-triazin-2(l )-one (331). This reaction is undoubtedly an /S jvr-4r2 reaction and not an aliphatic dealkylation. The latter type occurs with anilines at much higher temperatures (150-200°) and with chloride ion in the reaction of non-basified alcohols with cyanuric chloride at reflux temperatures. The reported dealkylation with methoxide has been shown to be hydrolysis by traces of water present. Several analogous dealkylations by alkoxide ion, reported without evidence for the formation of the dialkyl ether, are all associated with the high reactivity of the alkoxy compounds which ai e, in fact, hydrolyzed by usually tolerable traces of water. Brown ... [Pg.304]

The Ni-catalyzed oligomerization of olefins in ionic liquids requires a careful choice of the ionic liquid s acidity. In basic melts (Table 5.2-2, entry (a)), no dimerization activity is observed. FFere, the basic chloride ions prevent the formation of free coordination sites on the nickel catalyst. In acidic chloroaluminate melts, an oligomerization reaction takes place even in the absence of a nickel catalyst (entry (b)). FFowever, no dimers are produced, but a mixture of different oligomers is... [Pg.245]


See other pages where Chloride ions formation is mentioned: [Pg.185]    [Pg.117]    [Pg.294]    [Pg.580]    [Pg.301]    [Pg.185]    [Pg.117]    [Pg.294]    [Pg.580]    [Pg.301]    [Pg.629]    [Pg.20]    [Pg.1169]    [Pg.220]    [Pg.394]    [Pg.494]    [Pg.509]    [Pg.72]    [Pg.281]    [Pg.147]    [Pg.551]    [Pg.211]    [Pg.213]    [Pg.225]    [Pg.204]    [Pg.481]    [Pg.148]    [Pg.85]    [Pg.319]    [Pg.467]    [Pg.271]    [Pg.48]    [Pg.262]    [Pg.332]   
See also in sourсe #XX -- [ Pg.68 , Pg.256 ]

See also in sourсe #XX -- [ Pg.68 , Pg.256 ]




SEARCH



Chloride ions

Formate ion

Ion formation

© 2024 chempedia.info