Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral auxiliaries asymmetric oxidation

Another useful method for the asymmetric oxidation of enol derivatives is osmium-mediated dihydroxylation using cinchona alkaloid as the chiral auxiliary. The oxidation of enol ethers and enol silyl ethers proceeds with enantioselectivity as high as that of the corresponding dihydroxylation of olefins (vide infra) (Scheme 30).139 It is noteworthy that the oxidation of E- and Z-enol ethers gives the same product, and the E/Z ratio of the substrates does not strongly affect the... [Pg.226]

Hence, monoprotection of 1,4-butanediol with Nall and trapping with allyl bromide led to 4-allyloxybutan-l-ol (Scheme 21). The crude product was treated with Jones reagent to furnish 4-allyloxybutyric acid (73). Treatment with oxalyl chloride in hexane at room temperature gave the corresponding acid chloride, which reacted with A-oxazoiidinone enolate to give a substrate for asymmetric alkylation upon treatment with NaHMDS and Mel. Reduction of 74 with lithium aluminum hydride led to a primary alcohol and recovered chiral auxiliary. Swern oxidation and treatment with Ph3PCHCOOMe afforded the a,P-unsaturatcd ester 75. [Pg.452]

Synthesis of 2,2,3-trisubstituted cyclopentanone (633) has been realised through 1,4-asymmetric addition reaction of 2-methylcyclopent-2-ene-l-one (629) to chiral phosphonamide (630). Subsequent allq lation with methyl bromoacetate (631) afforded 2,2,3-substitued cyclopentanone derivative (632) with three stereocentres in very high stereo-seleetivity (>90%). Finally, removal of the covalently bonded chiral auxiliary using oxidative methods provided o-ring fragment of 9,11-seeosterols (633) in 79% yield and with the RRS configuration (Scheme 184). ... [Pg.318]

The first practical method for asymmetric epoxidation of primary and secondary allylic alcohols was developed by K.B. Sharpless in 1980 (T. Katsuki, 1980 K.B. Sharpless, 1983 A, B, 1986 see also D. Hoppe, 1982). Tartaric esters, e.g., DET and DIPT" ( = diethyl and diisopropyl ( + )- or (— )-tartrates), are applied as chiral auxiliaries, titanium tetrakis(2-pro-panolate) as a catalyst and tert-butyl hydroperoxide (= TBHP, Bu OOH) as the oxidant. If the reaction mixture is kept absolutely dry, catalytic amounts of the dialkyl tartrate-titanium(IV) complex are suflicient, which largely facilitates work-up procedures (Y. Gao, 1987). Depending on the tartrate enantiomer used, either one of the 2,3-epoxy alcohols may be obtained with high enantioselectivity. The titanium probably binds to the diol grouping of one tartrate molecule and to the hydroxy groups of the bulky hydroperoxide and of the allylic alcohol... [Pg.124]

Dithiane 1-oxide derivatives as chiral auxiliaries and asymmetric building blocks for organic synthesis 980PP145. [Pg.265]

To control the stereochemistry of 1,3-dipolar cycloaddidon reacdons, chiral auxiliaries are introduced into either the dipole-part or dipolarophile A recent monograph covers this topic extensively ° therefore, only typical examples are presented here. Alkenes employed in asymmetric 1,3-cycloaddidon can be divided into three main groups (1) chiral allyhc alcohols, f2 chiral amines, and Hi chiral vinyl sulfoxides or vinylphosphine oxides. [Pg.251]

The oxidation of heteroatoms and, in particular, the conversion of sulfides to asymmetric sulfoxides has continued to be a highly active field in biocatalysis. In particular, the diverse biotransformations at sulfur have received the majority of attention in the area of enzyme-mediated heteroatom oxidation. This is particularly due to the versatile applicability of sulfoxides as chiral auxiliaries in a variety of transformations coupled with facile protocols for the ultimate removal [187]. [Pg.253]

Dipolar cycloaddition reactions are of main interest in nitrile oxide chemistry. Recently, reviews and chapters in monographs appeared, which are devoted to individual aspects of these reactions. First of all, problems of asymmetric reactions of nitrile oxides (130, 131), including particular aspects, such as asymmetric metal-catalyzed 1,3-dipolar cycloaddition reactions (132, 133), development of new asymmetric reactions utilizing tartaric acid esters as chiral auxiliaries (134), and stereoselective intramolecular 1,3-dipolar cycloadditions (135) should be mentioned. Other problems considered are polymer-supported 1,3-dipolar cycloaddition reactions, important, in particular, for combinatorial chemistry... [Pg.19]

However, most asymmetric 1,3-dipolar cycloaddition reactions of nitrile oxides with alkenes are carried out without Lewis acids as catalysts using either chiral alkenes or chiral auxiliary compounds (with achiral alkenes). Diverse chiral alkenes are in use, such as camphor-derived chiral N-acryloylhydrazide (195), C2-symmetric l,3-diacryloyl-2,2-dimethyl-4,5-diphenylimidazolidine, chiral 3-acryloyl-2,2-dimethyl-4-phenyloxazolidine (196, 197), sugar-based ethenyl ethers (198), acrylic esters (199, 200), C-bonded vinyl-substituted sugar (201), chirally modified vinylboronic ester derived from D-( + )-mannitol (202), (l/ )-menthyl vinyl ether (203), chiral derivatives of vinylacetic acid (204), ( )-l-ethoxy-3-fluoroalkyl-3-hydroxy-4-(4-methylphenylsulfinyl)but-1 -enes (205), enantiopure Y-oxygenated-a,P-unsaturated phenyl sulfones (206), chiral (a-oxyallyl)silanes (207), and (S )-but-3-ene-1,2-diol derivatives (208). As a chiral auxiliary, diisopropyl (i ,i )-tartrate (209, 210) has been very popular. [Pg.25]

The major breakthrough in the catalytic asymmetric dihydroxylation reactions of olefins was reported by Jacobsen et al.55 in 1988. Combining 9-acetoxy dihydroquinidine as the chiral auxiliary with /V-methylmorphine TV-oxide as the secondary oxidant in aqueous acetone produced optically active diols in excellent yields, along with efficient catalytic turnover. [Pg.223]

Using a stoichiometric amount of (i ,i )-DIPT as the chiral auxiliary, optically active 2-isoxazolines can be obtained via asymmetric 1,3-dipolar addition of achiral allylic alcohols with nitrile oxides or nitrones bearing an electron-withdrawing group (Scheme 5-53).86a Furthermore, the catalytic 1,3-dipolar cycloaddition of nitrile oxide has been achieved by adding a small amount of 1,4-dioxane (Scheme 5-53, Eq. 3).86b The presence of ethereal compounds such as 1,4-dioxane is crucial for the reproducibly higher stereoselectivity. [Pg.310]

In 1986, Puchot et al.104 studied the nonlinear correlation between the enantiomeric excess of a chiral auxiliary and the optical yield in an asymmetric synthesis, either stoichiometric or catalytic. Negative NLEs [(—)-NLEs] were observed in the asymmetric oxidation of sulfide and in [.S ]-proline-mediated asymmetric Robinson annulation reactions, while a positive NLE [(+)-NLEs]... [Pg.492]

A synthesis of novel chiral phosphine oxide aminal 113 has been developed by reacting phosphine oxide aldehyde 111 with diamine 112. The condensation gave a single diastereomer of the phosphine oxide aminal in 65% yield. This compound can be used as chiral auxiliary in asymmetric synthesis (Equation 15) <1996TA3431, 1996TL3051, 1996TL7465>. [Pg.59]

The virtue of performing the PKR in an enantioselective manner has been extensively elaborated during the last decade. As a result, different powerful procedures were developed, spanning both auxiliary-based approaches and catalytic asymmetric reactions. For instance, the use of chiral N-oxides was reported by Kerr et al., who examined the effect of the chiral brucine N-oxide in the intermolecular PKR of propargylic alcohols and norbornadiene [59]. Under optimized conditions, ee values up to 78% at - 60 °C have been obtained (Eq. 10). Chiral sparteine N-oxides are also able to induce chirality, but the observed enantioselectivity was comparatively lower [60]. [Pg.180]

Applications. In the last decade a lot of research has been devoted to the development of catalytic routes to a series of asymmetric carboxylic acids that lack the acetamido ligand as additional functionality. In Figure 4.17 four are listed, which are important as anaesthetics for rheumatic diseases. Their sales in beat many bulk chemicals the turnover of Naproxen (retail) in 1990 was 700 million for 1000 tons. S-Naproxen is now being produced by Syntcx via resolution with a chiral auxiliary. The main patents from Syntex expired in the U.S. in 1993, the reason for a lot of activity to study alternative synthetic routes. Routes leading to an asymmetric centre are o asymmetric hydrogenation of an unsaturated acid, o asymmetric carbohydroxylation of a styrene precursor, o asymmetric hydroformylation of a styrene precursor and oxidation. [Pg.88]

The pyrrolobenzodiazepine-5,11 -diones II have been utilized in asymmetric syntheses of both the cis- and tra i-decahydro-quinoline alkaloids (Schemes 21 and 22). For example, reduction of 100 with 4.4 equiv. of potassium in the presence of 2 equiv. of t-BuOH, followed by protonation of the resulting enolate with NH4CI at —78 °C gave the cA-fused tetra-hydrobenzene derivative 101.Amide-directed hydrogenation of 101 gave the hexahydrobenzene derivative with diastereo-selectivity greater than 99 1. Removal of the chiral auxiliary and adjustment of the oxidation state provided aldehyde 103 which was efficiently converted to the poison frog alkaloid (+)-pumiliotoxin C. [Pg.8]

Another approach that relies on asymmetric induction from the alkene part, uses chiral auxiliaries of various types, thereby leading to enantiomerically enriched or pure isoxazoline products. The complexity of some of these auxiliaries is high, and more economical solutions are desirable since the competition is the resolution of racemic cycloadducts with an overall efficiency up to 50% yield. With chiral nitrile oxides, the situation is much less satisfactory since asymmetric induction of the 1,4-type (with 1-alkenes) is minimal, and hardly better with a 1,3-relationship of inducing-forming stereocenters, when 1,2-disubstituted alkenes are employed (Scheme 6.22). Upon separation of the two diastereomers, however, another entry to pure optically active isoxazolines is available. [Pg.386]

The carbon fragment used in this approach can also be provided by sulfur yUdes. In this arena, Metzner and co-workers <99JCS(P1)731> developed a novel asymmetric variant employing (+)-(2/J,5/J)-2,5-dimethylthiolane (53) as the chiral auxiliary to prepare rrons-(S,S)-stilbene oxide (56). Chiral epoxides have also been prepared from aldehydes using sulfur ylides derived from the products of Baker s yeast reductions <99SL1328>. [Pg.63]

In continuation of our efforts to explore the utility of the SAMP/RAMP hydra-zone methodology, we developed the first asymmetric synthesis of a-phosphino ketones via formation of a carbon-phosphorus bond in the a-position to the carbonyl group [70]. The key step of this asymmetric C—P bond formation is the electrophilic phosphinylation of the ketone SAMP hydrazone 87, giving rise to the borane-adduct of the phosphino hydrazone 88 with excellent diastereoselectiv-ity (de = 95-98%). Since these phosphane-borane adducts are stable with respect to oxidation, the chemoselective cleavage of the chiral auxiliary by ozonolysis leading to the a-phosphino ketones (R)-89 could be accomplished with virtually no racemization. Using RAMP as a chiral auxiliary, the synthesis of the enantiomer (S)-89 was possible (Scheme 1.1.25). [Pg.22]

Chiral sulfoxides have emerged as versatile building blocks and chiral auxiliaries in the asymmetric synthesis of pharmaceutical products. The asymmetric oxidation of prochiral sulfides with chiral metal complexes has become one of the most effective routes to obtain these chiral sulfoxides.We have recently developed a new heterogeneous catalytic system (WO3-30% H2O2) which efficiently catalyzes both the asymmetric oxidation of a variety of thioethers (1) and the kinetic resolution of racemic sulfoxides (3), when used in the presence of cinchona alkaloids such as hydroquinidine 2,5-diphenyl-4,6-pyrimidinediyl diether [(DHQD)2-PYR], Optically active sulfoxides (2) are produced in high yields and with good enantioselectivities (Figure 9.3). ... [Pg.288]

Asymmetric oxidation of prochiral sulfides is one of the most effective routes for the preparation of chiral sulfoxides. These latter molecules attract great interest, as they are useful synthons for some drugs. They can also be used as chiral auxiliaries due to their configurational stability. The oxidation can be performed by using complexes... [Pg.293]

An asymmetric synthesis of mevalolactone in over 87% e.e. employs a 1,3-oxathiane as the chiral auxiliary (81TL2859). The reagent (818), easily prepared from (+)-pulegone (81TL2855), was metallated with u-butyllithium and the anion reacted with acetaldehyde. Oxidation of the diastereomeric mixture of alcohols to the ketone (819) and reaction of... [Pg.490]

Organometallic compounds asymmetric catalysis, 11, 255 chiral auxiliaries, 266 enantioselectivity, 255 see also specific compounds Organozinc chemistry, 260 amino alcohols, 261, 355 chirality amplification, 273 efficiency origins, 273 ligand acceleration, 260 molecular structures, 276 reaction mechanism, 269 transition state models, 264 turnover-limiting step, 271 Orthohydroxylation, naphthol, 230 Osmium, olefin dihydroxylation, 150 Oxametallacycle intermediates, 150, 152 Oxazaborolidines, 134 Oxazoline, 356 Oxidation amines, 155 olefins, 137, 150 reduction, 5 sulfides, 155 Oxidative addition, 5 amine isomerization, 111 hydrogen molecule, 16 Oxidative dimerization, chiral phenols, 287 Oximes, borane reduction, 135 Oxindole alkylation, 338 Oxiranes, enantioselective synthesis, 137, 289, 326, 333, 349, 361 Oxonium polymerization, 332 Oxo process, 162 Oxovanadium complexes, 220 Oxygenation, C—H bonds, 149... [Pg.196]


See other pages where Chiral auxiliaries asymmetric oxidation is mentioned: [Pg.293]    [Pg.106]    [Pg.76]    [Pg.431]    [Pg.46]    [Pg.185]    [Pg.100]    [Pg.211]    [Pg.289]    [Pg.232]    [Pg.20]    [Pg.25]    [Pg.411]    [Pg.66]    [Pg.59]    [Pg.258]    [Pg.817]    [Pg.889]    [Pg.163]    [Pg.571]    [Pg.490]    [Pg.25]    [Pg.735]   
See also in sourсe #XX -- [ Pg.24 , Pg.25 , Pg.26 , Pg.27 , Pg.28 ]




SEARCH



Asymmetric chirality

Asymmetric oxidation

Chiral auxiliaries, diastereoselectivity, asymmetric nitrile oxide cycloadditions

Chirality auxiliaries

Oxidation chiral

© 2024 chempedia.info