Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemisorption surface polarization

The influence of the surface polarity of powders on their adsorption and dispersion properties can be profound, as is discussed in Sec. VIII,A. The values of F are likely to be put to many uses as more of them are measured. The electrostatic surface fields are doubtless involved in the phenomena of chemisorption and catalysis, capable of inducing polarization or electron shift of adsorbing molecules. For silica-alumina catalysts, the production of active M-O-M surface groups must be considered the most important factor responsible for chemisorption and catalj ic activity. [Pg.286]

Chemisorption systems are sometimes used for removing trace concentrations of contaminants, but the difficulty of regeneration makes such systems unsuitable for most process applications so most adsorption processes depend on physical adsorption. The forces of physical adsorption are weaker than the forces of chemisorption so the heats of physical adsorption are lower and the adsorbent is more easily regenerated. Several different types of force are involved. For nonpolar systems the major contribution is generally from dispersion-repulsion (van der Waals) forces, which are a fundamental property of all matter. When the surface is polar, depending on the nature of the sorbate molecule, there may also be important contributions from polarization, dipole, and quadmpole interactions. Selective adsorption of a polar species such as water or a quadrupolar species such as CO2 from a mixture with other nonpolar species can therefore be accomplished by using a polar adsorbent. Indeed, adjustment of surface polarity is one of the main ways of tailoring adsorbent selectivity. [Pg.30]

FIGURE 2.17 (a) Schematic illustration of the reversible behavior of the adsorbed layer in the case of nonspecific adsorption from an aqueous solution on a methylated surface and (b) in the case of specific adsorption (chemisorption) on polar surface from a nonpolar hydrocarbon. In the second case, a critical compression force needs to be applied in order to cause (with some probability) rupture and the displacement of the adsorption layer. (Redrawn from Shchukin, E.D., Colloid J 59, 248,1997.)... [Pg.63]

Vibrational energy states are too well separated to contribute much to the entropy or the energy of small molecules at ordinary temperatures, but for higher temperatures this may not be so, and both internal entropy and energy changes may occur due to changes in vibrational levels on adsoiption. From a somewhat different point of view, it is clear that even in physical adsorption, adsorbate molecules should be polarized on the surface (see Section VI-8), and in chemisorption more drastic perturbations should occur. Thus internal bond energies of adsorbed molecules may be affected. [Pg.584]

Carbon dioxide cannot be recommended for routine determinations of specific surface on the other hand, it should be particularly suitable for the study of the polarity of surfaces in systems where chemisorption can be excluded from consideration. [Pg.83]

Collectors ndFrothers. Collectors play a critical role ia flotation (41). These are heteropolar organic molecules characterized by a polar functional group that has a high affinity for the desired mineral, and a hydrocarbon group, usually a simple 2—18 carbon atom hydrocarbon chain, that imparts hydrophobicity to the minerals surface after the molecule has adsorbed. Most collectors are weak acids or bases or their salts, and are either ionic or neutral. The mode of iateraction between the functional group and the mineral surface may iavolve a chemical reaction, for example, chemisorption, or a physical iateraction such as electrostatic attraction. [Pg.412]

Adsorption and Surface Chemical Grafting. As with siHca and many other siHcate minerals, the surface of asbestos fibers exhibit a significant chemical reactivity. In particular, the highly polar surface of chrysotile fibers promotes adsorption (physi- or chemisorption) of various types of organic or inorganic substances (22). Moreover, specific chemical reactions can be performed with the surface functional groups (OH groups from bmcite or exposed siHca). [Pg.351]

Metal Oxide - Since metals are less electrophilic than silicon, metal oxide adsorbents show even stronger selectivity for polar molecules than do siliceous materials. The most commonly used metal oxide adsorbent is activated alumina, used primarily for gas drying. Occasionally, metal oxides find applications in specific chemisorption systems. For example, several processes are under development utilizing lime or limestone for removal of sulfur oxides from flue gases. Activated aluminas have surface areas in the range of 200 to 1,000 ftVft Average pore diameters range from about 30 to 80 A. [Pg.468]

Anodic polarization also may occur. Typically, this begins with the formation of a thin, impervious oxide film, chemisorbed at the anode (as on the surface of stainless steels). However, for most metals used in boiler plant systems this chemisorption process must be aided by anodic corrosion inhibitors to reduce corrosion rates to tolerable levels. An example is the application of nitrite-based inhibitors, widely used in HW heating systems. [Pg.151]

Usually adsorption, i.e. binding of foreign particles to the surface of a solid body, is distinguished as physical and chemical the difference lying in the type of adsorbate - adsorbent interaction. Physical adsorption is assumed to be a surface binding caused by polarization dipole-dipole Van-der-Vaals interaction whereas chemical adsorption, as any chemical interaction, stems from covalent forces with plausible involvement of electrostatic interaction. In contrast to chemisorption in which, as it has been already mentioned, an absorbed particle and adsorbent itself become a unified quantum mechanical system, the physical absorption only leads to a weak perturbation of the lattice of a solid body. [Pg.13]

We observe that the sign of A

additional potential jump on the surface of the semiconductor due to the electric double layer, which arises on the surface in adsorption and figures as one of the terms in the experimentally measured work fimction. Such an electric double layer may be the result of the polarization of the chemisorbed particles (when the dipole moments of the chemisorbed particles are directed normally to the surface). This can be the case, for example, in weak chemisorption (when the total charge of the surface remains unchanged). [Pg.231]

The correlation between the coverage of surface platinum atoms by bismuth adatoms (Ggi) and the measured rate of 1-phenylethanol oxidation was studied on unsupported platinum catalysts. An electrochemical method (cyclic voltammetry) was applied to determine G i and a good electric conductivity of the sample was necessary for the measurements. The usual chemisorption measurements have the disadvantage of possible surface restructuring of the bimetallic system at the pretreatment temperature. Another advantage of the electrochemical polarization method is that the same aqueous alkaline solution may be applied for the study of the surface structure of the catalyst and for the liquid phase oxidation of the alcohol substrate. [Pg.311]


See other pages where Chemisorption surface polarization is mentioned: [Pg.343]    [Pg.270]    [Pg.228]    [Pg.229]    [Pg.139]    [Pg.2881]    [Pg.44]    [Pg.2222]    [Pg.82]    [Pg.457]    [Pg.299]    [Pg.10]    [Pg.711]    [Pg.196]    [Pg.318]    [Pg.375]    [Pg.79]    [Pg.266]    [Pg.42]    [Pg.277]    [Pg.122]    [Pg.294]    [Pg.516]    [Pg.310]    [Pg.310]    [Pg.272]    [Pg.276]    [Pg.443]    [Pg.444]    [Pg.122]    [Pg.488]    [Pg.848]    [Pg.850]    [Pg.18]    [Pg.389]    [Pg.412]    [Pg.71]   
See also in sourсe #XX -- [ Pg.225 ]




SEARCH



Polar surface

Surface Chemisorption

Surface polarization

© 2024 chempedia.info