Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Associative chemisorption

As we have seen in Sec. IX,9, it is not necessary to introduce active and nonactive parts. In the case of iron films, as investigated by Porter and Tompkins, both phenomena apparently occur on the surface which is freely available. Fast chemisorption may quite normally be followed by slow chemisorption associated with an activation energy when the potential curves follow the picture laid down in Fig. 37. The activation energy is a normal consequence of the decrease in the heat of chemisorption. [Pg.137]

Since in chemisorption systems it is reasonable to suppose that the strong adsorbent-adsorbate interaction is associated with specific adsorption sites, a situation that may arise is that the adsorbate molecule occupies or blocks the occupancy of a second adjacent site. This means that each molecule effectively requires two adjacent sites. An analysis [106] suggests that in terms of the kinetic derivation of the Langmuir equation, the rate of adsorption should now be... [Pg.701]

The active site on the surface of selective propylene ammoxidation catalyst contains three critical functionalities associated with the specific metal components of the catalyst (37—39) an a-H abstraction component such as Sb ", or Te" " an olefin chemisorption and oxygen or nitrogen insertion component such as Mo " or and a redox couple such as Fe " /Fe " or Ce " /Ce" " to enhance transfer of lattice oxygen between the bulk and surface... [Pg.183]

Recently, a quantitative lateral interaction model for desorption kinetics has been suggested (103). It is based on a statistical derivation of a kinetic equation for the associative desorption of a heteronuclear diatomic molecule, taking into account lateral interactions between nearest-neighbor adatoms in the adsorbed layer. Thereby a link between structural and kinetic studies of chemisorption has been suggested. [Pg.389]

Although there is a severe paucity of vibrational data for the molecular form of O2 chemisorbed on rhodium surfaces, it is possible to visualize the dinuclear and trinuclear complexes as models for the associative chemisorption of O2 on rhodium. The pq-o values of the complexes Rh2(02)i,2 show little... [Pg.120]

If we move the chemisorbed molecule closer to the surface, it will feel a strong repulsion and the energy rises. However, if the molecule can respond by changing its electron structure in the interaction with the surface, it may dissociate into two chemisorbed atoms. Again the potential is much more complicated than drawn in Fig. 6.34, since it depends very much on the orientation of the molecule with respect to the atoms in the surface. For a diatomic molecule, we expect the molecule in the transition state for dissociation to bind parallel to the surface. The barriers between the physisorption, associative and dissociative chemisorption are activation barriers for the reaction from gas phase molecule to dissociated atoms and all subsequent reactions. It is important to be able to determine and predict the behavior of these barriers since they have a key impact on if and how and at what rate the reaction proceeds. [Pg.255]

Looking at the trends in dissociation probability across the transition metal series, dissociation is favored towards the left, and associative chemisorption towards the right. This is nicely illustrated for CO on the 4d transition metals in Fig. 6.36, which shows how, for Pd and Ag, molecular adsorption of CO is more stable than adsorption of the dissociation products. Rhodium is a borderline case and to the left of rhodium dissociation is favored. Note that the heat of adsorption of the C and O atoms changes much more steeply across the periodic table than that for the CO molecule. A similar situation occurs with NO, which, however, is more reactive than CO, and hence barriers for dissociation are considerably lower for NO. [Pg.257]

Here we shall be concerned with the interaction of inacming diatomic molecules (H-/ 0.) with either types of potential energy wells The molecular InteractJjon (responsible for elastic and direct-inelastic scattering with extremely short residence times of the irpinglng molecules in the potential) and the chemisorptive interaction (leading to dissociative adsorption and associative desorption, reflectively, and associated with H (D) atoms trapped in the chemisorption potential for an appreci le time). [Pg.224]

Figure 4.8. displays oscillograms of evolution of the electric conductivity of the ZnO film in the process of catalytic dehydration of isopropyl alcohol at various temperatures of the catalyzer and equal portions of alcohol (5-10-2 Torr) admitted into the reaction cell. Experimental curves 1-4 are bell-shaped. We suppose that this fact is associated with two circumstances. On one hand, alcohol vapors dissociate on the oxide film producing hydrogen atoms. The jump in electric conductivity is caused by chemisorption of these hydrogen atoms on the film which plays a part of the sensor in this case. Chi the other hand, the drop in electric conductivity is caused by complete dissociation of the admitted portion of alcohol ( depletion of the source of hydrogen atoms) and by... [Pg.235]

Further investigations of the above discussed effects show that, at fixed temperature of the oxide film (catalyst), the jump in the electric conductivity first increases in amplitude, as the portion of alcohol vapor admitted into the vessel increases. On further increase of the admitted portion of alcohol, the jump amplitude reduces (starting with the pressure of 3.6-10 2 Torr). At the pressure of 3.2-10 Torr, the jump in the electric conductivity of the zinc oxide film is less pronounced. Finally, at still higher pressures, it disappears (Fig.4.9). This effect is not unexpected. On our mind, it is associated with the fact that, as the concentration of alcohol vapor increases, the sum of the rate of interaction of the vapor with adsorbed hydrogen atoms and the rate of surface recombination of hydrogen atoms at the time instant of production becomes higher than the chemisorption rate of these atoms. The latter is responsible for the increase of the electric conductivity of the semiconductor oxide film via the reaction... [Pg.236]

What was evident in 1950 was that very few surface-sensitive experimental methods had been brought to bear on the question of chemisorption and catalysis at metal surfaces. However, at this meeting, Mignolet reported data for changes in work function, also referred to as surface potential, during gas adsorption with a distinction made between Van der Waals (physical) adsorption and chemisorption. In the former the work function decreased (a positive surface potential) whereas in the latter it increased (a negative surface potential), thus providing direct evidence for the electric double layer associated with the adsorbate. [Pg.4]

This model has, however, never been established experimentally and one can envisage that, as was suggested for the dissociative chemisorption of dioxygen, the process could involve just one surface site with the exothermicity associated... [Pg.145]

The temperature dependence of the extent of adsorption was not interpreted, except that the results were considered to be consistent with the magnetic measurements of Selwood (see Section II,C) which indicate that the number of carbon-metal bonds between adsorbed species and the surface increases threefold between 120°and 200°C due to extensive dissociative chemisorption. The authors proposed that two forms of chemisorbed benzene exist at the nickel surface, (i) an associatively adsorbed form which can be displaced by further benzene, and which may be w- or hexa-dissociatively adsorbed form that requires the presence of hydrogen to bring about its removal from the surface. [Pg.126]


See other pages where Associative chemisorption is mentioned: [Pg.128]    [Pg.128]    [Pg.14]    [Pg.685]    [Pg.236]    [Pg.115]    [Pg.405]    [Pg.168]    [Pg.1065]    [Pg.1188]    [Pg.334]    [Pg.166]    [Pg.336]    [Pg.321]    [Pg.520]    [Pg.520]    [Pg.11]    [Pg.15]    [Pg.271]    [Pg.274]    [Pg.313]    [Pg.117]    [Pg.711]    [Pg.4]    [Pg.8]    [Pg.54]    [Pg.69]    [Pg.83]    [Pg.90]    [Pg.93]    [Pg.103]    [Pg.138]    [Pg.164]    [Pg.99]    [Pg.121]    [Pg.133]    [Pg.135]    [Pg.138]    [Pg.142]   
See also in sourсe #XX -- [ Pg.119 , Pg.186 , Pg.220 , Pg.457 ]




SEARCH



© 2024 chempedia.info