Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactors kinetic models

This involves knowledge of chemistry, by the factors distinguishing the micro-kinetics of chemical reactions and macro-kinetics used to describe the physical transport phenomena. The complexity of the chemical system and insufficient knowledge of the details requires that reactions are lumped, and kinetics expressed with the aid of empirical rate constants. Physical effects in chemical reactors are difficult to eliminate from the chemical rate processes. Non-uniformities in the velocity, and temperature profiles, with interphase, intraparticle heat, and mass transfer tend to distort the kinetic data. These make the analyses and scale-up of a reactor more difficult. Reaction rate data obtained from laboratory studies without a proper account of the physical effects can produce erroneous rate expressions. Here, chemical reactor flow models using matliematical expressions show how physical... [Pg.1116]

A survey of the mathematical models for typical chemical reactors and reactions shows that several hydrodynamic and transfer coefficients (model parameters) must be known to simulate reactor behaviour. These model parameters are listed in Table 5.4-6 (see also Table 5.4-1 in Section 5.4.1). Regions of interfacial surface area for various gas-liquid reactors are shown in Fig. 5.4-15. Many correlations for transfer coefficients have been published in the literature (see the list of books and review papers at the beginning of this section). The coefficients can be evaluated from those correlations within an average accuracy of about 25%. This is usually sufficient for modelling of chemical reactors. Mathematical models of reactors arc often more sensitive to kinetic parameters. Experimental methods and procedures for parameters estimation are discussed in the subsequent section. [Pg.288]

Modelling plasma chemical systems is a complex task, because these system are far from thennodynamical equilibrium. A complete model includes the external electric circuit, the various physical volume and surface reactions, the space charges and the internal electric fields, the electron kinetics, the homogeneous chemical reactions in the plasma volume as well as the heterogeneous reactions at the walls or electrodes. These reactions are initiated primarily by the electrons. In most cases, plasma chemical reactors work with a flowing gas so that the flow conditions, laminar or turbulent, must be taken into account. As discussed before, the electron gas is not in thennodynamic equilibrium... [Pg.2810]

Over 25 years ago the coking factor of the radiant coil was empirically correlated to operating conditions (48). It has been assumed that the mass transfer of coke precursors from the bulk of the gas to the walls was controlling the rate of deposition (39). Kinetic models (24,49,50) were developed based on the chemical reaction at the wall as a controlling step. Bench-scale data (51—53) appear to indicate that a chemical reaction controls. However, flow regimes of bench-scale reactors are so different from the commercial furnaces that scale-up of bench-scale results caimot be confidently appHed to commercial furnaces. For example. Figure 3 shows the coke deposited on a controlled cylindrical specimen in a continuous stirred tank reactor (CSTR) and the rate of coke deposition. The deposition rate decreases with time and attains a pseudo steady value. Though this is achieved in a matter of rninutes in bench-scale reactors, it takes a few days in a commercial furnace. [Pg.438]

Dente and Ranzi (in Albright et al., eds.. Pyrolysis Theory and Industrial Practice, Academic Press, 1983, pp. 133-175) Mathematical modehng of hydrocarbon pyrolysis reactions Shah and Sharma (in Carberry and Varma, eds.. Chemical Reaction and Reaction Engineering Handbook, Dekker, 1987, pp. 713-721) Hydroxylamine phosphate manufacture in a slurry reactor Some aspects of a kinetic model of methanol synthesis are described in the first example, which is followed by a second example that describes coping with the multiphcity of reactants and reactions of some petroleum conversion processes. Then two somewhat simph-fied industrial examples are worked out in detail mild thermal cracking and production of styrene. Even these calculations are impractical without a computer. The basic data and mathematics and some of the results are presented. [Pg.2079]

Cropley, J.B., Systematic Errors in Recycle Reactor Kinetic Studies, Chemical Engineeiing Piogiess, February 1987, 46-51. (Model building, experimental design)... [Pg.2545]

Many elements of a mathematical model of the catalytic converter are available in the classical chemical reactor engineering literature. There are also many novel features in the automotive catalytic converter that need further analysis or even new formulations the transient analysis of catalytic beds, the shallow pellet bed, the monolith and the stacked and rolled screens, the negative order kinetics of CO oxidation over platinum,... [Pg.114]

Chapter 10 begins a more detailed treatment of heterogeneous reactors. This chapter continues the use of pseudohomogeneous models for steady-state, packed-bed reactors, but derives expressions for the reaction rate that reflect the underlying kinetics of surface-catalyzed reactions. The kinetic models are site-competition models that apply to a variety of catalytic systems, including the enzymatic reactions treated in Chapter 12. Here in Chapter 10, the example system is a solid-catalyzed gas reaction that is typical of the traditional chemical industry. A few important examples are listed here ... [Pg.349]

Simulation models are essential tools for reactor design and optimization. A general simulation model consists of a reactor and a reaction model [1]. The reactor model accounts for the reactor type and for the flow pattern in the reactor, while the reaction or kinetic model describes the kinetics of the chemical reactions occurring. [Pg.53]

Most accidents in the chemical and related industries occur in batch processing. Therefore, in Chapter 5 much attention is paid to theoretical analysis and experimental techniques for assessing hazards when scaling up a process. Reaction calorimetry, which has become a routine technique to scale up chemical reactors safely, is discussed in much detail. This technique has been proven to be very successful also in the identification of kinetic models suitable for reactor optimization and scale-up. [Pg.12]

Modelling can at least facilitate the determination of the most effective scale-up program. Information from three fields is needed for modelling (1) chemical kinetics, (2) mass transfer, and (3) heat transfer. The importance of information for different processes has been qualitatively evaluated (see Table 5.3-5). Obviously, sufficiently accurate information on heat transfer is needed for batch reactors, which are of great interest for fine chemicals manufacture. Kinetic studies and modelling requires much time and effort. Therefore, the kinetics often is not known. Presently, this approach is winning in the scale-up of processes for bulk chemicals. The tools developed for scale-up of processes for bulk chemicals have been proven to be very useful. Therefore, the basics of this approach will be discussed in more detail in subsequent sections. [Pg.227]

Spectroscopic techniques, carried out in in situ and operando conditions, obviously represent powerful tools for the description of the reactions and the catalysts in running conditions. In fact, the exigency of the scientist to look at the chemical process at a molecular level cannot only address the traditional kinetics modelling, where the reactor itself behaves as a black box. The use of spectroscopy allows monitoring the catalytic material under duty, directly revealing species and transformations, which can then support the hypothesis made for mathematical calculations applied to a kinetic model [1],... [Pg.98]

The importance of chemical-reaction kinetics and the interaction of the latter with transport phenomena is the central theme of the contribution of Fox from Iowa State University. The chapter combines the clarity of a tutorial with the presentation of very recent results. Starting from simple chemistry and singlephase flow the reader is lead towards complex chemistry and two-phase flow. The issue of SGS modeling discussed already in Chapter 2 is now discussed with respect to the concentration fields. A detailed presentation of the joint Probability Density Function (PDF) method is given. The latter allows to account for the interaction between chemistry and physics. Results on impinging jet reactors are shown. When dealing with particulate systems a particle size distribution (PSD) and corresponding population balance equations are intro-... [Pg.398]

Ideal flow is introduced in Chapter 2 in connection with the investigation of kinetics in certain types of ideal reactor models, and in Chapter 11 in connection with chemical reactors as a contrast to nonideal flow. As its name implies, ideal flow is a model of flow which, in one of its various forms, may be closely approached, but is not actually achieved. In Chapter 2, three forms are described backmix flow (BMF), plug flow (PF), and laminar flow (LF). [Pg.317]

Dr. Walas has several decades of varied experience in industry and academia and is an active industrial consultant for the process design of chemical reactors and chemical and petroleum plants. He has written four related books on reaction kinetics, phase equilibria, process equipment selection and design, and mathematical modeling of chemical engineering processes, as well as the sections Reaction Kinetics and Chemical Reactors in the seventh edition of Chemical Engineers Handbook. He is a Fellow of the AlChE and a registered professional engineer. [Pg.888]

We will be modeling many chemical reactors, and we must be familiar with the basic relationships and terminology used in describing the kinetics (rate of reaction) of chemical reactions. For more details, consult one of the several excellent texts in this field. [Pg.36]

There are several control problems in chemical reactors. One of the most commonly studied is the temperature stabilization in exothermic monomolec-ular irreversible reaction A B in a cooled continuous-stirred tank reactor, CSTR. Main theoretical questions in control of chemical reactors address the design of control functions such that, for instance (i) feedback compensates the nonlinear nature of the chemical process to induce linear stable behavior (ii) stabilization is attained in spite of constrains in input control (e.g., bounded control or anti-reset windup) (iii) temperature is regulated in spite of uncertain kinetic model (parametric or kinetics type) or (iv) stabilization is achieved in presence of recycle streams. In addition, reactor stabilization should be achieved for set of physically realizable initial conditions, (i.e., global... [Pg.36]


See other pages where Chemical reactors kinetic models is mentioned: [Pg.311]    [Pg.225]    [Pg.56]    [Pg.515]    [Pg.561]    [Pg.236]    [Pg.270]    [Pg.306]    [Pg.250]    [Pg.12]    [Pg.692]    [Pg.219]    [Pg.194]    [Pg.304]    [Pg.305]    [Pg.328]    [Pg.553]    [Pg.532]    [Pg.100]    [Pg.590]    [Pg.89]    [Pg.66]    [Pg.66]    [Pg.251]    [Pg.681]    [Pg.573]    [Pg.119]    [Pg.261]    [Pg.57]    [Pg.37]    [Pg.43]   
See also in sourсe #XX -- [ Pg.210 ]




SEARCH



Chemical kinetic modeling

Chemical kinetic modelling

Chemical kinetics

Chemical kinetics models

Chemical reactor modeling

Chemical reactors

Chemical reactors Kinetics

Kinetic Chemicals

Kinetic models, chemical

Reactor kinetic model

Reactor kinetics

Reactors chemical reactor

© 2024 chempedia.info