Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactions preparing

The most frequent chain extenders are butanediol or diamines as in the case of elastomeric fibers. A typical procedure involves mixing MDI and a polyol at 80 °C for several hours under an inert gas blanket. Then the chain extender is added and stirred until the temperature starts rising. The material is then poured into the mold and the temperature increased to 110-130 °C for several hours to promote curing. Post-curing is then carried out for 24 h at 110°C to complete chemical reaction. Preparation of the elastomer from the prepolymer and chain extender proceeds according to the scheme ... [Pg.533]

The free radicals which have only a transient existence, like -CHa, C2H5 or OH, and are therefore usually met with only as intermediates in chemical reactions, can usually be prepared and studied directly only at low pressures of the order of 1 mm, when they may be transported from the place of preparation in a rapidly streaming inert gas without suffering... [Pg.181]

In the last years one can find a strong reorientation of most microscopical methods to study objects in natural (or adjustable) conditions without preparation. Microscopical visualization without vacuum and coating allows maintaining the natural specimen structure as well as examining its behavior under external influences (loading, chemical reactions, interaction with other solids, liquids, gases etc.)... [Pg.579]

Second-order effects include experiments designed to clock chemical reactions, pioneered by Zewail and coworkers [25]. The experiments are shown schematically in figure Al.6.10. An initial 100-150 fs pulse moves population from the bound ground state to the dissociative first excited state in ICN. A second pulse, time delayed from the first then moves population from the first excited state to the second excited state, which is also dissociative. By noting the frequency of light absorbed from tlie second pulse, Zewail can estimate the distance between the two excited-state surfaces and thus infer the motion of the initially prepared wavepacket on the first excited state (figure Al.6.10 ). [Pg.242]

While monomolecular collision-free predissociation excludes the preparation process from explicit consideration, themial imimolecular reactions involve collisional excitation as part of the unimolecular mechanism. The simple mechanism for a themial chemical reaction may be fomially decomposed into tliree (possibly reversible) steps (with rovibronically excited (CH NC) ) ... [Pg.765]

Reaching tire goal of tire ideal nanocrystal sample is not an easy task. There are few commercial sources for nanocrystals, and tire chemical reactions used to make them can require involved syntlietic metliodology. On tire otlier hand, tire last decade has seen enonnous progress in tliis area and many solids have now been prepared in tire... [Pg.2900]

Di- and poly-halogenated aliphatic hydrocarbons. No general procedure can be given for the preparation of derivatives of these compounds. Reliance must be placed upon their physical properties (b.p., density and refractive index) and upon any chemical reactions which they undergo. [Pg.292]

Hydroxyquinoline ( oxine ). The technique adopted in this preparation is based upon the fact that, in general, the reactants glycerol, amine, nitro compound and sulphuric acid can be mixed with temperature control, and then maintained at any convenient temperature below 120° without any appreciable chemical reaction taking place. A pre-mix of the amine, glycerol and sulphuric acid, maintained at a temperature which keeps it fluid (60-90°), is added in portions to a reaction vessel containiug the nitro compound and warmed with stirring to 140-170° at which temperature the Skraup reaction takes place. [Pg.830]

Krypton clathrates have been prepared with hydroquinone and phenol. 85Kr has found recent application in chemical analysis. By imbedding the isotope in various solids, kryptonates are formed. The activity of these kryptonates is sensitive to chemical reactions at the surface. Estimates of the concentration of reactants are therefore made possible. Krypton is used in certain photographic flash lamps for high-speed photography. Uses thus far have been limited because of its high cost. Krypton gas presently costs about 30/1. [Pg.101]

The replacement of 2-amino group by a hydrogen can be achieved by diazotization, followed by reduction with hypophosphorous acid (1-8, 13). Another method starting from 2-aminothiazole is to prepare the 2-halo-thiazole by the Sandmeyer reaction (prepared also from the 2-hydroxy-thiazole), which is then dehalogenated chemically or catalytically (1, 9, 10). [Pg.339]

This chapter is the first of two dealing with alkenes it describes their structure bonding and preparation Chapter 6 discusses their chemical reactions... [Pg.187]

When propene is polymerized under free radical conditions the polypropylene that results IS atactic Catalysts of the Ziegler-Natta type however permit the preparation of either isotactic or syndiotactic polypropylene We see here an example of how proper choice of experimental conditions can affect the stereochemical course of a chemical reaction to the extent that entirely new materials with unique properties result... [Pg.314]

Our discussion of chemical reactions of alkadienes will be limited to those of conju gated dienes The reactions of isolated dienes are essentially the same as those of individual alkenes The reactions of cumulated dienes are—like their preparation— so specialized that their treatment is better suited to an advanced course m organic chemistry... [Pg.405]

In contrast to alcohols with their nch chemical reactivity ethers (compounds contain mg a C—O—C unit) undergo relatively few chemical reactions As you saw when we discussed Grignard reagents m Chapter 14 and lithium aluminum hydride reduc tions m Chapter 15 this lack of reactivity of ethers makes them valuable as solvents m a number of synthetically important transformations In the present chapter you will learn of the conditions m which an ether linkage acts as a functional group as well as the methods by which ethers are prepared... [Pg.665]

The accuracy of a standardization depends on the quality of the reagents and glassware used to prepare standards. For example, in an acid-base titration, the amount of analyte is related to the absolute amount of titrant used in the analysis by the stoichiometry of the chemical reaction between the analyte and the titrant. The amount of titrant used is the product of the signal (which is the volume of titrant) and the titrant s concentration. Thus, the accuracy of a titrimetric analysis can be no better than the accuracy to which the titrant s concentration is known. [Pg.106]

Difluoroethanol is prepared by the mercuric oxide cataly2ed hydrolysis of 2-bromo-l,l-difluoroethane with carboxyHc acid esters and alkaH metal hydroxides ia water (27). Its chemical reactions are similar to those of most alcohols. It can be oxidi2ed to difluoroacetic acid [381-73-7] (28) it forms alkoxides with alkaH and alkaline-earth metals (29) with alkoxides of other alcohols it forms mixed ethers such as 2,2-difluoroethyl methyl ether [461-57-4], bp 47°C, or 2,2-difluoroethyl ethyl ether [82907-09-3], bp 66°C (29). 2,2-Difluoroethyl difluoromethyl ether [32778-16-8], made from the alcohol and chlorodifluoromethane ia aqueous base, has been iavestigated as an inhalation anesthetic (30,31) as have several ethers made by addition of the alcohol to various fluoroalkenes (32,33). Methacrylate esters of the alcohol are useful as a sheathing material for polymers ia optical appHcations (34). The alcohol has also been reported to be useful as a working fluid ia heat pumps (35). The alcohol is available ia research quantities for ca 6/g (1992). [Pg.293]

Many of the chemical reactions used to modify lignosulfonates are also used to modify kraft lignins. These include ozonation, alkaline—air oxidation, condensation with formaldehyde and carboxylation with chloroacetic acid (100), and epoxysuccinate (101). In addition, cationic kraft lignins can be prepared by reaction with glycidjiamine (102). [Pg.145]

There are a few economical routes that can be employed for production of the largest-volume phosphines as specialty chemicals. The preparation of alkyl phosphines, where R > C2H, employs the addition of lower phosphines across an olefinic double bond. The reaction may be either acid-, base-, or radical-catalyzed. The acid-catalyzed addition probably proceeds through the generation of a carbonium ion intermediate which is attacked by the unshared... [Pg.378]

Constmction of multilayers requires that the monolayer surface be modified to a hydroxylated one. Such surfaces can be prepared by a chemical reaction and the conversion of a nonpolar terminal group to a hydroxyl group. Examples of such reactions are the LiAlH reduction of a surface ester group (165), the hydroboration—oxidation of a terminal vinyl group (127,163), and the conversion of a surface bromide using silver chemistry (200). Once a subsequent monolayer is adsorbed on the "activated" monolayer, multilayer films may be built by repetition of this process (Fig. 8). [Pg.538]

Minor uses of vanadium chemicals are preparation of vanadium metal from refined pentoxide or vanadium tetrachloride Hquid-phase organic oxidation reactions, eg, production of aniline black dyes for textile use and printing inks color modifiers in mercury-vapor lamps vanadyl fatty acids as driers in paints and varnish and ammonium or sodium vanadates as corrosion inhibitors in flue-gas scmbbers. [Pg.394]

There are other methods of preparation that iavolve estabhshing an active phase on a support phase, such as ion exchange, chemical reactions, vapor deposition, and diffusion coating (26). For example, of the two primary types of propylene polymerization catalysts containing titanium supported on a magnesium haUde, one is manufactured usiag wet-chemical methods (27) and the other is manufactured by ball milling the components (28). [Pg.195]

Chemical Reactions of Dyes. Decolorization is important for cyanines used ia imaging materials. Understanding decolorization provides clues to dye reactions that may cause degradation of imaging materials duting preparation and storage. For many dyes, protonation of the methine chain occurs readily and reversibly (64). Highly basic carbocyanine dyes like those from benzimidazole (eg, 36) protonate so readily that this provides a practical decolorization method. [Pg.399]


See other pages where Chemical reactions preparing is mentioned: [Pg.248]    [Pg.248]    [Pg.390]    [Pg.1069]    [Pg.1990]    [Pg.2085]    [Pg.107]    [Pg.108]    [Pg.230]    [Pg.256]    [Pg.296]    [Pg.418]    [Pg.293]    [Pg.460]    [Pg.512]    [Pg.507]    [Pg.171]    [Pg.427]    [Pg.476]    [Pg.230]    [Pg.144]    [Pg.421]    [Pg.283]    [Pg.392]    [Pg.314]    [Pg.538]    [Pg.283]    [Pg.334]    [Pg.365]   
See also in sourсe #XX -- [ Pg.378 , Pg.379 , Pg.380 ]




SEARCH



Chemical Reaction During Preparation Process

Chemical preparation

Chemical reaction during catalyst preparation

Chemical reactions in preparation of nano copper by reduction-precipitation

Chemical reactions with laser-prepared reagents

Single-crystal preparation by means of chemical transport reactions. (Ni-Sn-S compounds as an example)

Ultrasound-assisted liquid sample preparation involving chemical reactions

Ultrasound-assisted liquid sample preparation without chemical reaction

© 2024 chempedia.info