Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical methods heavy metals

Environmental Defence recently released Toxic Nation A Report on Pollution in Canadians (Environmental Defence 2005). Samples were collected from 11 people for the presence of 88 chemicals, including heavy metals, PBDEs, PCBs, perfluorinated chemicals, organochlorine pesticides, organophosphorus-insecticide metabolites, and VOCs. The study objectives included determining whether pollutants were present at measurable concentrations in Canadians, identifying chemicals of concern, and creating public awareness of methods for avoiding exposure. [Pg.83]

Soil and sediments major contaminants - behaviour, fate and transport chemical and biological remediation methods heavy metals, lead, arsenic (two lectures)... [Pg.185]

Analytical Procedures. Standard methods for analysis of food-grade adipic acid are described ia the Food Chemicals Codex (see Refs, ia Table 8). Classical methods are used for assay (titration), trace metals (As, heavy metals as Pb), and total ash. Water is determined by Kad-Fisher titration of a methanol solution of the acid. Determination of color ia methanol solution (APHA, Hazen equivalent, max. 10), as well as iron and other metals, are also described elsewhere (175). Other analyses frequendy are required for resia-grade acid. For example, hydrolyzable nitrogen (NH, amides, nitriles, etc) is determined by distillation of ammonia from an alkaline solution. Reducible nitrogen (nitrates and nitroorganics) may then be determined by adding DeVarda s alloy and continuing the distillation. Hydrocarbon oil contaminants may be determined by ir analysis of halocarbon extracts of alkaline solutions of the acid. [Pg.246]

Chemical Properties. Elemental analysis, impurity content, and stoichiometry are determined by chemical or iastmmental analysis. The use of iastmmental analytical methods (qv) is increasing because these ate usually faster, can be automated, and can be used to determine very small concentrations of elements (see Trace AND RESIDUE ANALYSIS). Atomic absorption spectroscopy and x-ray fluorescence methods are the most useful iastmmental techniques ia determining chemical compositions of inorganic pigments. Chemical analysis of principal components is carried out to determine pigment stoichiometry. Analysis of trace elements is important. The presence of undesirable elements, such as heavy metals, even in small amounts, can make the pigment unusable for environmental reasons. [Pg.4]

The paper describes the different chemical sensors and mathematical methods applied and presents the review of electronic tongue application for quantitative analysis (heavy metals and other impurities in river water, uranium in former mines, metal impurities in exhaust gases, ets) and for classification and taste determination of some beverages (coffee, bear, juice, wines), vegetable oil, milk, etc. [1]. [Pg.19]

At X-ray fluorescence analysis (XRF) of samples of the limited weight is perspective to prepare for specimens as polymeric films on a basis of methylcellulose [1]. By the example of definition of heavy metals in film specimens have studied dependence of intensity of X-ray radiation from their chemical compound, surface density (P ) and the size (D) particles of the powder introduced to polymer. Have theoretically established, that the basic source of an error of results XRF is dependence of intensity (F) analytical lines of determined elements from a specimen. Thus the best account of variations P provides a method of the internal standard at change P from 2 up to 6 mg/sm the coefficient of variation describing an error of definition Mo, Zn, Cu, Co, Fe and Mn in a method of the direct external standard, reaches 40 %, and at use of a method of the internal standard (an element of comparison Ga) value does not exceed 2,2 %. Experiment within the limits of a casual error (V changes from 2,9 up to 7,4 %) has confirmed theoretical conclusions. [Pg.104]

For exposure of reasons of observable discrepancy of results of the analysis simulated experiment with application synthetic reference samples of aerosols [1]. The models have demonstrated absence of significant systematic errors in results XRF. While results AAA and FMA depend on sort of chemical combination of an elements, method of an ashing of a material and mass of silicic acid remaining after an ashing of samples. The investigations performed have shown that silicic acid adsorbs up to 40 % (rel.) ions of metals. The coefficient of a variation V, describing effect of the indicated factors on results of the analysis, varies %) for Mn and Fe from 5 up to 20, for Cu - from 10 up to 40, for Pb - from 10 up to 70, for Co the ambassador of a dry ashing of samples - exceeds 50. At definition Cr by a method AAA the value V reaches 70 %, if element presences an atmosphere in the form of Cr O. At photometric definition Cr (VI) the value V is equal 40%, when the element is present at aerosols in the form of chromates of heavy metals. [Pg.207]

The sorption of ions of heavy metals (Cu(II), Zn(II), Cr(VI), Cd(II), Pb(II)) on ChCS in static and dynamic conditions were studied. For an estimation of selective sorbate ability ChCS the distribution factor was determined. Sorption, physical and chemical properties of complexes received by different methods were analyzed by a compai ative method. [Pg.288]

Standards imposed to the industrial waste streams charged in heavy metals are more and more drastic in accordance with the updated knowledges of the toxicity of mercury, cadmium, lead, chromium... when they enter the human food chain after accumulating in plants and animals (Forster Wittmann, 1983). Nowadays, the use of biosorbents (Volesky, 1990) is more and more considered to complete conventional (physical and chemical) methods of removal that have shown their limits and/or are prohibitively expensive for metal concentrations typically below 100 mg.l-i. [Pg.535]

Chemical precipitation/coagulation methods transfer the target substances (mainly metals) in solution into a solid phase. Many heavy metal hydroxides and sulfides have very low solubility (within a certain pH range) and are therefore insoluble. The metal sulfides have significantly lower solubility than their hydroxide counterparts over a broad range of pH.26 Precipitation/coagulation is also applicable for removing certain anionic species such as phosphate, sulfate, and fluoride. [Pg.622]

Afterburners may be of the flame, thermal, or catalytic type. In each case the object is to cause a chemical reaction which will result in an acceptable product, such as water and carbon dioxide. This is not possible, hence this is an undesirable method, if heavy metals, sulfides, halogens, or phosphates are present. The costs associated with this method are given in reference 22. [Pg.433]

Thus we shall be concerned with properties that furnish information about the nature of the ligands, the oxidation state of the metal, and the geometry of the field of ligands. Techniques such as radio-isotope tracer studies, neutron-activation analysis, and electron microscopy are powerful methods for locating a metal within constituents of the cell and are particularly suited to heavy-metal rather than organic drugs but since they do not provide information about the chemical environment of the metal they will not concern us here. After each section below we shall give an example, not necessarily from platinum chemistry, where the method has been used with success in biochemistry. [Pg.22]

Selecting an approach A nearby lab specializes in mass spectrometric analysis and can perform the EPA screening method for pesticides and other toxic chemicals. Your own lab just bought an inductively coupled plasma emission spectrometer and can analyze the water for heavy metals. [Pg.832]


See other pages where Chemical methods heavy metals is mentioned: [Pg.118]    [Pg.158]    [Pg.301]    [Pg.60]    [Pg.321]    [Pg.208]    [Pg.270]    [Pg.228]    [Pg.293]    [Pg.415]    [Pg.2214]    [Pg.86]    [Pg.312]    [Pg.43]    [Pg.349]    [Pg.229]    [Pg.161]    [Pg.408]    [Pg.598]    [Pg.612]    [Pg.725]    [Pg.950]    [Pg.1323]    [Pg.437]    [Pg.72]    [Pg.107]    [Pg.148]    [Pg.203]    [Pg.149]    [Pg.205]    [Pg.42]    [Pg.19]    [Pg.627]    [Pg.656]    [Pg.429]    [Pg.445]   


SEARCH



Heavy chemicals

Metal methods

© 2024 chempedia.info