Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical bond formula

Lewis structure (Section 1 3) A chemical formula in which electrons are represented by dots Two dots (or a line) be tween two atoms represent a covalent bond in a Lewis structure Unshared electrons are explicitly shown and sta ble Lewis structures are those in which the octet rule is sat isfied... [Pg.1287]

An important approach to the graphic representation of molecules is the use of a connection table. A connection table is a data base that stores the available bond types and hybridizations for individual atoms. Using the chemical formula and the connection table, molecular stmctures may be generated through interactive graphics in a menu-driven environment (31—33) or by using a linear input of code words (34,35). The connection table approach may be carried to the next step, computer-aided molecular design (CAMD) (36). [Pg.63]

Panel 1.1 The 20 different amino acids that occur in proteins. Only side chains are shown, except for the first amino acid, alanine, where all atoms are shown. The bond from the side chain to Ca is red. A ball-and stick model, the chemical formula, the full name, and the three-letter and one-letter codes are given for each amino acid. [Pg.7]

Spatial congruence of C-H graphs is applied essentially only in chemical formulas which represent a compound of carbon atoms and atoms of valence 1 (or radicals of valence 1). In this case condition (IV), besides (I), (II), (III), adds another restriction not only the relationships are important but also the spatial arrangement of the bonds. The spatial interpretation of the congruence of C-H graphs coincides with the interpretation of the chemical formula as stereoformula. I use stereoisomers in this sense. For example, the number of different stereoisomers is equal to the number of spati-... [Pg.59]

Charles, Jacques, 57 Charles law, 58 Chemical bonding, see Bonding Chemical bonds, see Bond Chemical change, 38 Chemical energy, 119 Chemical equations, see Equations Chemical equilibrium, law of, 152 Chemical formulas, see Formula Chemical kinetics, 124 Chemical reactions, see Reactions Chemical stability, 30 Chemical symbols, 30 not from common names, 31 see inside back cover Chemotherapy, 434 Chlorate ion, 360 Chloric acid, 359 Chlorides chemistry of, 99 of alkali metals, 93,103 of third-row elements, 103 Chlorine... [Pg.457]

Students can explain hydrogen bondings correctly, but have difficulties, to predict them from chemical formula and to draw conclusions concerning the physical properties of the substance. (Peterson et al., 1989 Ozmen, 2004)... [Pg.245]

A central feature of a Lewis structure is the bonding framework, which shows all the atoms connected as they are in the actual molecule. There is no foolproof method for putting the atoms together in the correct arrangement, but the following guidelines frequently lead from the chemical formula to the correct arrangement of atoms. [Pg.584]

These five guidelines allow us to figure out the frameworks of many compounds from their chemical formulas. When the guidelines do not provide an unambiguous framework, however, we need additional stmctural information. For example, the chemical formula of benzene is Cg Hg. The guidelines tell us that the six H atoms are in outer positions but provide no help in deducing the rest of the connections. In fact, there are several possible frameworks for the chemical formula Cg Hg. We must be told that the six C atoms of benzene form a ring, with one H bonded to each C, before we can write the framework for this molecule. [Pg.586]

Follow the six-step procedure, using the chemical formula to determine the bonding framework. [Pg.589]

The two stractural isomers of C4 Hio at left have the same chemical formula but different bonding... [Pg.606]

Silicates also exist in which each silicon atom bonds to one outer oxygen and to three inner oxygen atoms. The result is a linked network in which every silicon atom forms three Si—O—Si links, giving a planar, sheet-like structure. The empirical formula of this silicate is S12 O5. In many minerals, aluminum atoms replace some of the silicon atoms to give aluminosilicates. The micas—one has the chemical formula... [Pg.618]

A description of the bonding in triethylaluminum begins with the Lewis structure. The chemical formula,... [Pg.620]

C09-0105. Describe the bonding and determine the empirical chemical formula of the silicon-oxygen network of zircon. [Pg.649]

C09-0109. Species with chemical formula X I4 can have the following shapes. For each, name the molecular geometry, identify the ideal VSEPR bond angles, tell how many lone pairs are present in the structure, and give a specific example. [Pg.649]

Determine the chemical formulas and Lewis structures of these two substances. Describe then-bonding completely, including the geometry and hybridization for each carbon atom. [Pg.691]

Although the chemical formulas indicate that ribose is a pentose and fructose is a hexose, the ring portions of the structures are the same size. Proceeding clockwise around the rings from the oxygen atom, we see that the structures differ at the first two positions. In the first position, ribose has a carbon atom bonded to —H and —OH, while)S-fructose has a carbon bonded to —OH and — CH2 OH. In the second position the molecules have the same two bonds but in different orientations. The OH group points up in y6-fructose and down in ribose. The two molecules have the same structures at the other positions. [Pg.923]

In the usual chemical formulas written for chain polymers the sue-cessive units are projected as a co-linear sequence on the surface of the sheet of paper. This form of representation fails to convey what is perhaps the most significant structural characteristic of a long polymer chain, namely, its capacity to assume an enormous array of configurations. This configurational versatility is a consequence of the considerable degree of rotational freedom about single bonds of the chain. In the simple polymethylene chain, for example, the conventional formula... [Pg.399]

VSEPR theory works best when predicting the shapes of molecules composed of a central atom surrounded by bonded atoms and nonbonding electrons. Some of the possible shapes of molecules that contain a central atom are given in Figure 7.11, along with the chemical formulas of molecules that have that shape. [Pg.99]

Frankland discovered the fundamental principle of valency—the combining power of atoms to form compounds. He gave the chemical bond its name and popularized the notation we use today for writing chemical formulas. He codiscovered helium, helped found synthetic organic and structural chemistry, and was the father of organometallic chemistry. He was also the first person to thoroughly analyze the gases from different types of coal and—dieters take note—the first to measure the calories in food. [Pg.43]

While Lavoisier had established a rational system for naming elements and compounds, Frankland developed the system that we use today for writing chemical formulas and for depicting the bonds between the atoms in molecules. As Frankland synthesized more and more isomers, compounds with the same formulas but different molecular structures, he found traditional formulas confusing they showed the types and numbers of elements but provided no clue as to how the atoms were arranged inside the molecule. To remedy the problem, Frankland depicted the atoms in functional groups and drew lines between them to indicate the bonds between the elements. [Pg.51]

Thus, in weak electrolytes, molecules can exist in a similar way as in non-electrolytes—a molecule is considered to be an electrically neutral species consisting of atoms bonded together so strongly that this species can be studied as an independent entity. In contrast to the molecules of non-electrolytes, the molecules of weak electrolytes contain at least one bond with a partly ionic character. Strong electrolytes do not form molecules in this sense. Here the bond between the cation and the anion is primarily ionic in character and the corresponding chemical formula represents only a formal molecule nonetheless, this formula correctly describes the composition of the ionic crystal of the given strong electrolyte. [Pg.13]

FIGURE 13.2 Chemical formulas of macular xanthophylls. It can be noted that the chemical structures of (meso)-zeaxanthin and lutein differ only by the position of a single double bond. [Pg.259]

Carotenoids are a class of lipophilic compounds with a polyisoprenoid structure. Most carotenoids contain a series of conjugated double bonds, which are sensitive to oxidative modification and cis-trans isomerization. There are six major carotenoids (ji-carotenc, a-carotene, lycopene, P-cryptoxanthin, lutein, and zeaxanthin) that can be routinely found in human plasma and tissues. Among them, p-carotene has been the most extensively studied. More recently, lycopene has attracted considerable attention due to its association with a decreased risk of certain chronic diseases, including cancers. Considerable efforts have been expended in order to identify its biological and physiochemical properties. Relative to P-carotene, lycopene has the same molecular mass and chemical formula, yet lycopene is an open-polyene chain lacking the P-ionone ring structure. While the metabolism of P-carotene has been extensively studied, the metabolism of lycopene remains poorly understood. [Pg.418]


See other pages where Chemical bond formula is mentioned: [Pg.379]    [Pg.27]    [Pg.58]    [Pg.83]    [Pg.48]    [Pg.191]    [Pg.562]    [Pg.790]    [Pg.622]    [Pg.188]    [Pg.122]    [Pg.122]    [Pg.127]    [Pg.128]    [Pg.23]    [Pg.380]    [Pg.27]    [Pg.29]    [Pg.625]    [Pg.883]    [Pg.35]    [Pg.285]    [Pg.59]   
See also in sourсe #XX -- [ Pg.267 ]

See also in sourсe #XX -- [ Pg.260 ]




SEARCH



Chemical formula

Chemical formulas bond-line

Formulas chemical formula (

© 2024 chempedia.info