Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Charge-transfer electrode reactions

Another type of charge transfer electrode reaction is the ion transfer reaction in which the electrical charge is transferred by an ion across the double layer. These reactions are typical of metal dissolution and deposition. For instance... [Pg.9]

Theories of simple charge-transfer electrode reactions developed since the late 1950s (for review see [8, 101 -105]) gave a rather simplified view of solvent effects on the rate of electrode reactions. [Pg.238]

In studying interfacial electrochemical behavior, especially in aqueous electrolytes, a variation of the temperature is not a common means of experimentation. When a temperature dependence is investigated, the temperature range is usually limited to 0-80°C. This corresponds to a temperature variation on the absolute temperature scale of less than 30%, a value that compares poorly with other areas of interfacial studies such as surface science where the temperature can easily be changed by several hundred K. This "deficiency" in electrochemical studies is commonly believed to be compensated by the unique ability of electrochemistry to vary the electrode potential and thus, in case of a charge transfer controlled reaction, to vary the energy barrier at the interface. There exist, however, a number of examples where this situation is obviously not so. [Pg.275]

A Schottky diode is always operated under depletion conditions flat-band condition would involve giant currents. A Schottky diode, therefore, models the silicon electrolyte interface only accurately as long as the charge transfer is limited by the electrode. If the charge transfer becomes reaction-limited or diffusion-limited, the electrode may as well be under accumulation or inversion. The solid-state equivalent would now be a metal-insulator-semiconductor (MIS) structure. However, the I-V characteristic of a real silicon-electrolyte interface may exhibit features unlike any solid-state device, as... [Pg.41]

TAKAHASHI and YAMAMOTO, and later, KARPACHEV, OVSHINNIKOV and YUSHINAp studied oxi-dation and reduction of silver metal electrodes at the interface Ag/Ag S I. Obtained current-voltage curves are reported on fig.14, curve 1. Curve 2 represents the current-voltage curve for a charge-transfer controlled reaction. The overall electrochemical raction is... [Pg.255]

Equation (56) shows that the corrosion current density for a charge transfer-controlled reaction is entirely determined by the kinetic parameters of the partial electrode reactions involved. [Pg.10]

The structure and dynamics of the liquid-liquid interface have been the focus of considerable research activity [1], In addition to fundamental interest, the charge transfer (CT) reactions occurring at the liquid-liquid interface, that is, electron transfer (ET), simple ion transfer (IT), and facilitated IT, are relevant to important technological systems from chemical sensors to drug delivery in pharmacology to solvent extraction in hydrometallurgy [1,2]. At the interface between two immiscible electrolyte solutions (ITIES), one can conduct reactions that cannot occur at solid electrodes. [Pg.191]

Electrode processes are a class of heterogeneous chemical reaction that involves the transfer of charge across the interface between a solid and an adjacent solution phase, either in equilibrium or under partial or total kinetic control. A simple type of electrode reaction involves electron transfer between an inert metal electrode and an ion or molecule in solution. Oxidation of an electroactive species corresponds to the transfer of electrons from the solution phase to the electrode (anodic), whereas electron transfer in the opposite direction results in the reduction of the species (cathodic). Electron transfer is only possible when the electroactive material is within molecular distances of the electrode surface thus for a simple electrode reaction involving solution species of the fonn... [Pg.1922]

The detailed mechanism of battery electrode reactions often involves a series of chemical and electrochemical or charge-transfer steps. Electrode reaction sequences can also include diffusion steps on the electrode surface. Because of the high activation energy required to transfer two electrons at one time, the charge-transfer reactions are beheved to occur by a series of one electron-transfer steps illustrated by the reactions of the 2inc electrode in strongly alkaline medium (41). [Pg.513]

F r d ic Current. The double layer is a leaky capacitor because Faradaic current flows around it. This leaky nature can be represented by a voltage-dependent resistance placed in parallel and called the charge-transfer resistance. Basically, the electrochemical reaction at the electrode surface consists of four thermodynamically defined states, two each on either side of a transition state. These are (11) (/) oxidized species beyond the diffuse double layer and n electrons in the electrode and (2) oxidized species within the outer Helmholtz plane and n electrons in the electrode, on one side of the transition state and (J) reduced species within the outer Helmholtz plane and (4) reduced species beyond the diffuse double layer, on the other. [Pg.50]

In electrode kinetics a relationship is sought between the current density and the composition of the electrolyte, surface overpotential, and the electrode material. This microscopic description of the double layer indicates how stmcture and chemistry affect the rate of charge-transfer reactions. Generally in electrode kinetics the double layer is regarded as part of the interface, and a macroscopic relationship is sought. For the general reaction... [Pg.64]

The essential features of the electrochemical mechanism of corrosion were outlined at the beginning of the section, and it is now necessary to consider the factors that control the rate of corrosion of a single metal in more detail. However, before doing so it is helpful to examine the charge transfer processes that occur at the two separable electrodes of a well-defined electrochemical cell in order to show that since the two half reactions constituting the overall reaction are interdependent, their rates and extents will be equal. [Pg.76]

An electrochemical cell is a device by means of which the enthalpy (or heat content) of a spontaneous chemical reaction is converted into electrical energy conversely, an electrolytic cell is a device in which electrical energy is used to bring about a chemical change with a consequent increase in the enthalpy of the system. Both types of cells are characterised by the fact that during their operation charge transfer takes place at one electrode in a direction that leads to the oxidation of either the electrode or of a species in solution, whilst the converse process of reduction occurs at the other electrode. [Pg.77]

For simplicity a cell consisting of two identical electrodes of silver immersed in silver nitrate solution will be considered first (Fig. 1.20a), i.e. Agi/AgNOj/Ag,. On open circuit each electrode will be at equilibrium, and the rate of transfer of silver ions from the metal lattice to the solution and from the solution to the metal lattice will be equal, i.e. the electrodes will be in a state of dynamic equilibrium. The rate of charge transfer, which may be regarded as either the rate of transfer of silver cations (positive charge) in one direction, or the transfer of electrons (negative charge) in the opposite direction, in an electrochemical reaction is the current I, so that for the equilibrium at electrode I... [Pg.77]

Over the years the original Evans diagrams have been modified by various workers who have replaced the linear E-I curves by curves that provide a more fundamental representation of the electrode kinetics of the anodic and cathodic processes constituting a corrosion reaction (see Fig. 1.26). This has been possible partly by the application of electrochemical theory and partly by the development of newer experimental techniques. Thus the cathodic curve is plotted so that it shows whether activation-controlled charge transfer (equation 1.70) or mass transfer (equation 1.74) is rate determining. In addition, the potentiostat (see Section 20.2) has provided... [Pg.94]

The present Section, which provides an outline of selected relevant topics in electrochemistry, is intended primarily as an introduction to aqueous corrosion for those readers whose basic training has not involved a study of electrochemistry. The scope of electrochemistry is enormous and cannot be treated adequately here, but there are now a number of excellent books on the subject, and it is hoped that this outline will serve to stimulate further study. The topics selected are as follows a) the nature of the electrified interface between the metal and the solution, (b) adsorption, (c) transfer of charge across the interface under equilibrium and non-equilibrium conditions, d) overpotential and the rate of an electrode reaction and (e) the hydrogen evolution reaction and hydrogen absorption by ferrous alloys. For reasons of space a number of important topics, such as the electrochemistry of electrolyte solutions, have been omitted. [Pg.1165]

Transport of a species in solution to and from an electrode/solution interface may occur by migration, diffusion and convection although in any specific system they will not necessarily be of equal importance. However, at the steady state all steps involved in the electrode reaction must proceed at the same rate, irrespective of whether the rate is controlled by a slow step in the charge transfer process or by the rate of transport to or from the electrode surface. It follows that the rate of transport must equal the rate of charge transfer ... [Pg.1199]

Controlled-potential (potentiostatic) techniques deal with the study of charge-transfer processes at the electrode-solution interface, and are based on dynamic (no zero current) situations. Here, the electrode potential is being used to derive an electron-transfer reaction and the resultant current is measured. The role of the potential is analogous to that of the wavelength in optical measurements. Such a controllable parameter can be viewed as electron pressure, which forces the chemical species to gain or lose an electron (reduction or oxidation, respectively). [Pg.2]

S.3.3 Electrocatalytic Modified Electrodes Often the desired redox reaction at the bare electrode involves slow electron-transfer kinetics and therefore occurs at an appreciable rate only at potentials substantially higher than its thermodynamic redox potential. Such reactions can be catalyzed by attaching to the surface a suitable electron transfer mediator (45,46). Knowledge of homogeneous solution kinetics is often used to select the surface-bound catalyst. The function of the mediator is to facilitate the charge transfer between the analyte and the electrode. In most cases the mediated reaction sequence (e.g., for a reduction process) can be described by... [Pg.121]


See other pages where Charge-transfer electrode reactions is mentioned: [Pg.469]    [Pg.248]    [Pg.469]    [Pg.248]    [Pg.94]    [Pg.260]    [Pg.79]    [Pg.3]    [Pg.305]    [Pg.207]    [Pg.254]    [Pg.156]    [Pg.299]    [Pg.9]    [Pg.416]    [Pg.46]    [Pg.404]    [Pg.615]    [Pg.639]    [Pg.40]    [Pg.1929]    [Pg.2720]    [Pg.505]    [Pg.512]    [Pg.512]    [Pg.513]    [Pg.299]    [Pg.81]    [Pg.88]    [Pg.90]    [Pg.1220]    [Pg.233]    [Pg.933]   
See also in sourсe #XX -- [ Pg.238 ]




SEARCH



Charge Transfer Reactions

Charge electrode

Charge reaction

Electrode Reactions under Kinetics (Charge Transfer) Control

Electrode charge transfer

Electrode reactions

Electrode reactions transfer

© 2024 chempedia.info