Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface bound catalysts

S.3.3 Electrocatalytic Modified Electrodes Often the desired redox reaction at the bare electrode involves slow electron-transfer kinetics and therefore occurs at an appreciable rate only at potentials substantially higher than its thermodynamic redox potential. Such reactions can be catalyzed by attaching to the surface a suitable electron transfer mediator (45,46). Knowledge of homogeneous solution kinetics is often used to select the surface-bound catalyst. The function of the mediator is to facilitate the charge transfer between the analyte and the electrode. In most cases the mediated reaction sequence (e.g., for a reduction process) can be described by... [Pg.121]

In many supported catalytic systems, it is nearly impossible to determine either the specific species, responsible for the observed catalytic activity, or the mechanistic pathway of the reaction. Using a defined SAM system in which careful molecular design is followed by controlled deposition into a solid-supported catalyst of known morphology, surface coverage, mode of binding and molecular orientation, allows direct correlation of an observed catalytic activity with the structure on the molecular scale. SAM and LB-systems allow detailed and meaningful studies of established surface bound catalysts to understand their behavior in heterogeneous... [Pg.379]

The maximal rate occurs when the enzyme sites are virtually all occupied (saturated) by substrate i.e. rfXni<<[X] then [X E] EE and the reaction rate is k2 x E, which is termed Vjnax in enz5mie catalysis and is analogous to the maximum rate of homogeneous and surface catalysis when the dissolved or surface-bound catalysts are saturated. The rate of reaction at the substrate concentration equal to Xm is Vniax /2. If Xm >> [X], the rate becomes linear in the substrate concentration, [X ... [Pg.335]

Enzymes are important catalysts in biological organisms and are of increasing use in detergents and sensors. It is of interest to understand not only their adsorption characteristics but also their catalytic activity on the surface. The interplay between adsorption and deactivation has been clearly illustrated [119] as has the ability of a protein to cleave a surface-bound substrate [120]. [Pg.404]

Methane reforming with carbon dioxide proceeds in a complex sequence of reaction steps involving the dissociative adsorption/reaction of methane and COj at metal sites. Hydrogen is generated during methane dissociation In the second set of reactions CO2 dissociates into CO and adsorbed oxygen. The reaction between the surface bound carbon (from methane dissociation) and the adsorbed oxygen (from CO2 dissociation ) yields carbon monoxide. A stable catalyst can only be achieved if the two sets of reactions are balanced. [Pg.471]

CC-coupling reactions of carbon units on the catalyst surface occur either through radical species or through "unsaturated" carbon intermediates such as surface bound carbenes (CKy or carbynes (CH). [Pg.172]

Two main types of catalyst layers are used in PEM fuel cells polyfefrafluo-roethylene (PTFE)-bound catalyst layers and thin-film catalyst layers [3]. The PTFE-bound CL is the earlier version, used mainly before 1990. If confains two components hydrophobic PTFE and Pt black catalyst or carbon-supported Pt catalyst. The PTFE acts as a binder holding the catalyst together to form a hydrophobic and structured porous matrix catalyst layer. This porous structure can simultaneously provide passages for reacfanf gas fransport to the catalyst surface and for wafer removal from fhe cafalysf layer. In fhe CL, the catalyst acts as both the reaction site and a medium for electron conduction. In the case of carbon-supported Pt catalysts, both carbon support and catalyst can act as electron conductors, but only Pt acts as the reaction site. [Pg.64]

The use of surface bound triflate ions has been exploited by Raja et al. to immobilize the complexes [Rh(COD) fSj-(-i-)-PMP ], [Pd(allyl) fSj-(-i-)-PMP ], [Rh(COD) fSj-(-)-AEP rand[Rh(COD) flR,2Rj-(-t)-DED ]"in the pores of silicas possessing various pore sizes with narrow distributions [128]. These constrained chiral catalysts were then tested for the asymmetric hydrogenation of methyl ben-zoylformate to its corresponding methyl mandelate (40°C, methanol, 2 MPa H2). In the homogenous form, only the catalysts [Rh(COD) fSj-(-i-)-PMP ], [Pd(allyl) (Sj-(-i-)-PMP ] exhibit any signiflcant e.e.s under the reaction conditions (53%... [Pg.207]

The tris-neopentyl Mo(VI) nitride, Mo(-CH2- Bu)3(=N) [134], reacts with surface silanols of silica to yield the tris-neopentyl derivative intermediate [(=SiO)Mo (-CH2- Bu)3(=NH)] followed by reductive elimination of neopentane, as indicated by labeling studies from labeled starting organometallic complex, to yield the final imido neopentylideneneopentyl monosiloxy complex [(=SiO)Mo(=CH- Bu)(-CH2 - Bu)(=NH)] [135]. The surface-bound neopentylidene Mo(VI) complex is an active olefin metathesis catalyst [135]. Improved synthesis of the same surface complex with higher catalytic activity by benzene impregnation rather than dichlorometh-ane on silica dehydroxylated at 700 °C has been reported [136],... [Pg.580]

Table 14.3 compares the catalyst activities of the (inactive) precursor fW(=Ar) (=CH Bu)(CH 2Bu)2], the heterogeneous catalysts obtained by grafting the precursor on Si02 7oo and on Si02 2oo, and the homogeneous silsesquioxane-based catalysts. It shows that only the siloxy alkylidene species, either molecular or surface-bound, are active catalysts. [Pg.584]

Lewis bound form with a strong band at 1440 cm together with a weak 1490cm band. This implies that the Bronsted acidity is associated with the strongly bound water and as this water is removed the pyridine becomes coordinated to a Lewis bound site either nearby or at the undercoordinated A1 site produced by the removal of surface bound water. This transformation of Bronsted to Lewis acid centres is well established in catalyst chemistry as the sample... [Pg.88]

The affinity of the polymer-bound catalyst for water and for organic solvent also depends upon the structure of the polymer backbone. Polystyrene is nonpolar and attracts good organic solvents, but without ionic, polyether, or other polar sites, it is completely inactive for catalysis of nucleophilic reactions. The polar sites are necessary to attract reactive anions. If the polymer is hydrophilic, as a dextran, its surface must be made less polar by functionalization with lipophilic groups to permit catalytic activity for most nucleophilic displacement reactions. The % RS and the chemical nature of the polymer backbone affect the hydrophilic/lipophilic balance. The polymer must be able to attract both the reactive anion and the organic substrate into its matrix to catalyze reactions between the two mutually insoluble species. Most polymer-supported phase transfer catalysts are used under conditions where both intrinsic reactivity and intraparticle diffusion affect the observed rates of reaction. The structural variables in the catalyst which control the hydrophilic/lipophilic balance affect both activity and diffusion, and it is often not possible to distinguish clearly between these rate limiting phenomena by variation of active site structure, polymer backbone structure, or % RS. [Pg.57]

Since water is required for the reaction, the primary photochemical product is thought to be a surface bound hydroxy radical. The observed chemoselectivity for radical formation from the adsorbed ether, however, is thought to be governed by adsorption phenomena since a free hydroxyl radical in homogeneous solution is much less selective than the photoirradiated catalyst system. [Pg.88]

That products of intermediate oxidation level can be detected in the photocatalytic reactions of hydrocarbons and fossil fuels is also consistent with a surface bound radical intermediate . Photocatalytic isotope exchange between cyclopentane and deuterium on bifunctional platinum/titanium dioxide catalysts indicates the importance of weakly adsorbed pentane at oxide sites. The platinum serves to attract free electrons, decreasing the efficiency of electron-hole recombination, and to regenerate the surface oxide after exchange. Much better control of the exchange is afforded with photoelectrochemical than thermal catalysis > ) As before, hydrocarbon oxidations can also be conducted at the gas-solid interface... [Pg.88]


See other pages where Surface bound catalysts is mentioned: [Pg.139]    [Pg.140]    [Pg.79]    [Pg.104]    [Pg.139]    [Pg.140]    [Pg.79]    [Pg.104]    [Pg.353]    [Pg.199]    [Pg.120]    [Pg.1150]    [Pg.310]    [Pg.463]    [Pg.1438]    [Pg.173]    [Pg.636]    [Pg.345]    [Pg.492]    [Pg.299]    [Pg.180]    [Pg.504]    [Pg.593]    [Pg.273]    [Pg.210]    [Pg.154]    [Pg.108]    [Pg.51]    [Pg.82]    [Pg.263]    [Pg.267]    [Pg.187]    [Pg.20]    [Pg.232]    [Pg.396]    [Pg.399]    [Pg.400]    [Pg.401]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Surface catalysts

© 2024 chempedia.info