Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Characterization, substrate phase

Total concentrations in the sediment do not necessarily reflect either the biologically or chemically reactive fraction of metals or substrates. Thus, -we have used partial extraction techniques to characterize different phases of both metal and substrate. Under different estuarine conditions, hydrous oxides may vary in crystallinity and in their associations -with other substrates (e.g., organics). The nature of the organic materials may also vary greatly. Different extractants remove different quantities of these substrates, in response to differences in substrate form ( ). We may not assume that extractants selectively remove trace metals from any single sorption substrate (2 +), but differences in trace metal solubility among extractants may be useful to empirically separate metal forms susceptible to different treatments. Statistical association... [Pg.581]

All silica immobilized phase transfer catalysts previously reported involve two or more steps for the immobilization. Problems with preparations of this type include the difficulty in obtaining maximum functionality on the substrate and residual substrate bond intermediates which may interfere in final applications. The purpose of this work was to prepare well-characterized functionalized phase transfer catalysts that could be immobilized on siliceous substrates in a single step. As will be shown the preparation of functionalized onium catalysts proceeds readily. The route to facile immobilization of crown ether was not so direct. Avenues for high yield chemistry employing accessible or economic intermediates were not available. A new class of crown ethers which are readily functionalized during synthesis was developed. We have designated than "silacrowns". This report concentrates upon the properties and characterization of these new phase transfer catalysts. [Pg.281]

The metal substrate evidently affords a huge ( 10 and even as high as 10 [84, 85]) increase in the cross-section for Raman scattering of the adsorbate. There are two broad classes of mechanisms which are said to contribute to this enhancenient [, and Ml- The first is based on electromagnetic effects and the second on cheniicaT effects. Of these two classes the fomier is better understood and, for the most part, the specific mechanisms are agreed upon the latter is more complicated and is less well understood. SERS enhancenient can take place in either physisorbed or chemisorbed situations, with the chemisorbed case typically characterized by larger Raman frequency shifts from the bulk phase. [Pg.1206]

Uosaki K, Shen Y and Kondo T 1995 Preparation of a highiy ordered Au(111) phase on a poiycrystaiiine goid substrate by vacuum deposition and its characterization by XRD, GiSXRD, STM/AFM and eiectrochemicai measurements J.Phys. Chem. 99 14 117-14 122... [Pg.2756]

On the basis of data obtained the possibility of substrates distribution and their D-values prediction using the regressions which consider the hydrophobicity and stmcture of amines was investigated. The hydrophobicity of amines was estimated by the distribution coefficient value in the water-octanole system (Ig P). The molecular structure of aromatic amines was characterized by the first-order molecular connectivity indexes ( x)- H was shown the independent and cooperative influence of the Ig P and parameters of amines on their distribution. Evidently, this fact demonstrates the host-guest phenomenon which is inherent to the organized media. The obtained in the research data were used for optimization of the conditions of micellar-extraction preconcentrating of metal ions with amines into the NS-rich phase with the following determination by atomic-absorption method. [Pg.276]

Conventionally RAIRS has been used for both qualitative and quantitative characterization of adsorbed molecules or films on mirror-like (metallic) substrates [4.265]. In the last decade the applicability of RAIRS to the quantitative analysis of adsorbates on non-metallic surfaces (e.g. semiconductors, glasses [4.267], and water [4.273]) has also been proven. The classical three-phase model for a thin isotropic adsorbate layer on a metallic surface was developed by Greenler [4.265, 4.272]. Calculations for the model have been extended to include description of anisotropic layers on dielectric substrates [4.274-4.276]. [Pg.250]

Lateral density fluctuations are mostly confined to the adsorbed water layer. The lateral density distributions are conveniently characterized by scatter plots of oxygen coordinates in the surface plane. Fig. 6 shows such scatter plots of water molecules in the first (left) and second layer (right) near the Hg(l 11) surface. Here, a dot is plotted at the oxygen atom position at intervals of 0.1 ps. In the first layer, the oxygen distribution clearly shows the structure of the substrate lattice. In the second layer, the distribution is almost isotropic. In the first layer, the oxygen motion is predominantly oscillatory rather than diffusive. The self-diffusion coefficient in the adsorbate layer is strongly reduced compared to the second or third layer [127]. The data in Fig. 6 are qualitatively similar to those obtained in the group of Berkowitz and coworkers [62,128-130]. These authors compared the structure near Pt(lOO) and Pt(lll) in detail and also noted that the motion of water in the first layer is oscillatory about equilibrium positions and thus characteristic of a solid phase, while the motion in the second layer has more... [Pg.361]

The potentiostatic electrodeposition of iron selenide thin films has been reported recently in aqueous baths of ferric chloride (FeCb) and Se02 onto stainless steel and fluorine-doped TO-glass substrates [193], The films were characterized as polycrystalline and rich in iron, containing in particular a monoclinic FesSea phase. Optical absorption studies showed the presence of direct transition with band gap energy of 1.23 eV. [Pg.121]

The OUR is an activity-related quantitative measure of the aerobic biomass influence on the relationship between the electron donor (organic substrate) and the electron acceptor (dissolved oxygen, DO). It is a measure of the flow of electrons through the entire process system under aerobic conditions (Figure 2.2). The OUR versus time relationship of wastewater samples from sewers becomes a backbone for analysis of the microbial system. This relationship is crucial for characterization of the suspended wastewater phase in terms of COD components and corresponding kinetic and stoichiometric parameters of in-sewer processes. [Pg.175]

The experimental approach discussed in this article is, in contrast, particularly amenable to investigating solvent contributions to the interfacial properties 131. Species, which electrolyte solutions are composed of, are dosed in controlled amounts from the gas phase, in ultrahigh vacuum, onto clean metal substrates. Sticking is ensured, where necessary, by cooling the sample to sufficiently low temperature. Again surface-sensitive techniques can be used, to characterize microscopically the interaction of solvent molecules and ionic species with the solid surface. Even without further consideration such information is certainly most valuable. The ultimate goal in these studies, however, is to actually mimic structural elements of the interfacial region and to be able to assess the extent to which this may be achieved. [Pg.55]

In non-electrochemical heterogeneous catalysis, the interface between the catalyst and the gas phase can often be characterized using a wide variety of spectroscopic probes. Differences between reaction conditions and the UHV conditions used in many studies have been probed extensively 8 as have differences between polycrystalline and single-crystalline materials. Nevertheless, the adsorbate-substrate interactions can often be characterized in the absence of pressure effects. Therefore, UHY based surface science techniques are able to elucidate the surface structures and energetics of the heterogeneous catalysis of gas phase molecules. [Pg.308]


See other pages where Characterization, substrate phase is mentioned: [Pg.161]    [Pg.605]    [Pg.351]    [Pg.437]    [Pg.547]    [Pg.102]    [Pg.391]    [Pg.527]    [Pg.414]    [Pg.2]    [Pg.57]    [Pg.259]    [Pg.684]    [Pg.110]    [Pg.341]    [Pg.304]    [Pg.178]    [Pg.873]    [Pg.168]    [Pg.674]    [Pg.92]    [Pg.103]    [Pg.107]    [Pg.281]    [Pg.231]    [Pg.429]    [Pg.348]    [Pg.491]    [Pg.1009]    [Pg.61]    [Pg.160]    [Pg.239]    [Pg.369]    [Pg.38]    [Pg.189]    [Pg.359]    [Pg.102]    [Pg.103]    [Pg.233]   
See also in sourсe #XX -- [ Pg.43 ]




SEARCH



Phase characterization

Substrate characterization

© 2024 chempedia.info