Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chapter Scope

The chapter Scope details the principal objectives of the safety case, the key requirements and standards, possible relationships to other safety cases, e.g. software and system safety case and high level assun tions and limits. [Pg.93]

There are two different aspects to these approximations. One consists in the approximate treatment of the underlying many-body quantum dynamics the other, in the statistical approach to observable average quantities. An exlmistive discussion of different approaches would go beyond the scope of this introduction. Some of the most important aspects are discussed in separate chapters (see chapter A3.7. chapter A3.11. chapter A3.12. chapter A3.131. [Pg.774]

The mechanism for CO oxidation over platinum group metals has been established from a wealth of data, the analysis of which is beyond the scope of this chapter. It is quite evident that surface science provided the foundation for this mechanism by directly showing that CO adsorbs molecularly and O2 adsorbs... [Pg.952]

In this chapter we shall first outline the basic concepts of the various mechanisms for energy redistribution, followed by a very brief overview of collisional intennoleciilar energy transfer in chemical reaction systems. The main part of this chapter deals with true intramolecular energy transfer in polyatomic molecules, which is a topic of particular current importance. Stress is placed on basic ideas and concepts. It is not the aim of this chapter to review in detail the vast literature on this topic we refer to some of the key reviews and books [U, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, and 32] and the literature cited therein. These cover a variety of aspects of tire topic and fiirther, more detailed references will be given tliroiighoiit this review. We should mention here the energy transfer processes, which are of fiindamental importance but are beyond the scope of this review, such as electronic energy transfer by mechanisms of the Forster type [33, 34] and related processes. [Pg.1046]

Atoms have complete spherical synnnetry, and the angidar momentum states can be considered as different synnnetry classes of that spherical symmetry. The nuclear framework of a molecule has a much lower synnnetry. Synnnetry operations for the molecule are transfonnations such as rotations about an axis, reflection in a plane, or inversion tlnough a point at the centre of the molecule, which leave the molecule in an equivalent configuration. Every molecule has one such operation, the identity operation, which just leaves the molecule alone. Many molecules have one or more additional operations. The set of operations for a molecule fonn a mathematical group, and the methods of group theory provide a way to classify electronic and vibrational states according to whatever symmetry does exist. That classification leads to selection rules for transitions between those states. A complete discussion of the methods is beyond the scope of this chapter, but we will consider a few illustrative examples. Additional details will also be found in section A 1.4 on molecular symmetry. [Pg.1134]

The detailed theory of bonding in transition metal complexes is beyond the scope of this book, but further references will be made to the effects of the energy splitting in the d orbitals in Chapter 13. [Pg.60]

In unsteady states the situation is less satisfactory, since stoichiometric constraints need no longer be satisfied by the flux vectors. Consequently differential equations representing material balances can be constructed only for binary mixtures, where the flux relations can be solved explicitly for the flux vectors. This severely limits the scope of work on the dynamical equations and their principal field of applicacion--Che theory of stability of steady states. The formulation of unsteady material and enthalpy balances is discussed in Chapter 12, which also includes a brief digression on stability problems. [Pg.5]

What is the scope of Lewis-acid catalysis of Diels-Alder reactions in water An approach of extending the scope by making use of a temporary secondary coordination site is described in Chapter 4. [Pg.32]

In summary, the effects of a number of important parameters on the catalysed reaction between 2.4 and 2.5 have been examined, representing the first detailed study of Lewis-acid catalysis of a Diels-Alder reaction in water. Crucial for the success of Lewis-acid catalysis of this reaction is the bidentate character of 2.4. In Chapter 4 attempts to extend the scope of Lewis-acid catalysis of Diels-Alder reactions in water beyond the restriction to bidentate substrates will be presented. [Pg.63]

The merits of (enantioselective) Lewis-acid catalysis of Diels-Alder reactions in aqueous solution have been highlighted in Chapters 2 and 3. Both chapters focused on the Diels-Alder reaction of substituted 3-phenyl-1-(2-pyr idyl)-2-prop ene-1-one dienophiles. In this chapter the scope of Lewis-acid catalysis of Diels-Alder reactions in water is investigated. Some literature claims in this area are critically examined and requirements for ejfective Lewis-acid catalysis are formulated. Finally an attempt is made to extend the scope of Lewis-acid catalysis in water by making use of a strongly coordinating auxiliary. [Pg.107]

A micelle-bound substrate will experience a reaction environment different from bulk water, leading to a kinetic medium effect. Hence, micelles are able to catalyse or inhibit organic reactions. Research on micellar catalysis has focused on the kinetics of the organic reactions involved. An overview of the multitude of transformations that have been studied in micellar media is beyond the scope of this chapter. Instead, the reader is referred to an extensive set of review articles and monographs" ... [Pg.129]

The prime importance of these biological applications, far beyond the scope of this book, has in recent years focused interest on biological applications of thiazoles instead of on typical chemical research (at least for those described in Chapter 3). In the tables of products, thiazoles that are of biological interest are indicated... [Pg.399]

Isotherms of Type 111 and Type V, which are the subject of Chapter 5, seem to be characteristic of systems where the adsorbent-adsorbate interaction is unusually weak, and are much less common than those of the other three types. Type III isotherms are indicative of a non-porous solid, and some halting steps have been taken towards their use for the estimation of specific surface but Type V isotherms, which betoken the presence of porosity, offer little if any scope at present for the evaluation of either surface area or pore size distribution. [Pg.37]

Two other techniques that depend only on base SI units are coulometry and isotope-dilution mass spectrometry. Coulometry is discussed in Chapter 11. Isotope-dilution mass spectroscopy is beyond the scope of an introductory text, however, the list of suggested readings includes a useful reference. [Pg.235]

Earlier we noted that a response surface can be described mathematically by an equation relating the response to its factors. If a series of experiments is carried out in which we measure the response for several combinations of factor levels, then linear regression can be used to fit an equation describing the response surface to the data. The calculations for a linear regression when the system is first-order in one factor (a straight line) were described in Chapter 5. A complete mathematical treatment of linear regression for systems that are second-order or that contain more than one factor is beyond the scope of this text. Nevertheless, the computations for... [Pg.674]

An analysis of variance can be extended to systems involving more than a single variable. For example, a two-way ANOVA can be used in a collaborative study to determine the importance to an analytical method of both the analyst and the instrumentation used. The treatment of multivariable ANOVA is beyond the scope of this text, but is covered in several of the texts listed as suggested readings at the end of the chapter. [Pg.697]

This chapter is the narrowest in scope of any chapter in this book. In it we discuss a single experimental procedure and its interpretation. It is appropriate to examine light scattering in considerable detail, since the theory underlying this method is relatively unfamiliar to students and the interpretation yields information concerning a variety of polymer parameters. [Pg.659]


See other pages where Chapter Scope is mentioned: [Pg.47]    [Pg.4746]    [Pg.4748]    [Pg.31]    [Pg.355]    [Pg.357]    [Pg.341]    [Pg.343]    [Pg.205]    [Pg.207]    [Pg.47]    [Pg.4746]    [Pg.4748]    [Pg.31]    [Pg.355]    [Pg.357]    [Pg.341]    [Pg.343]    [Pg.205]    [Pg.207]    [Pg.35]    [Pg.4]    [Pg.1265]    [Pg.1283]    [Pg.2115]    [Pg.2279]    [Pg.2543]    [Pg.2725]    [Pg.2834]    [Pg.2867]    [Pg.46]    [Pg.45]    [Pg.204]    [Pg.394]    [Pg.597]    [Pg.14]    [Pg.18]    [Pg.191]    [Pg.162]    [Pg.177]    [Pg.479]   


SEARCH



© 2024 chempedia.info