Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Passive channels

Cyclic GMP decreases basal and stimulated concentrations of intracellular Ca (Nakashima et al, 1986 Johansson and Haynes, 1992). A number of Ca handling systems have been identified in platelets including receptor operated channels, passive leak, Ca -ATPase extrusion pump, the NaV Ca exchanger, Ca -accumulating ATPase pump of the dense tubular membrane (an intraplatelet membrane Ca store) and passive leakage and receptor operated Ca chatinels in the dense tubular membrane. In principle, all these... [Pg.461]

Porin channels are impHcated in the transport of cephalosporins because ceds deficient in porins are much more impermeable than are ceds that are rich in porins. The porins appear to function as a molecular sieve, adowing molecules of relatively low molecular weight to gain access to the periplasmic space by passive diffusion. In enterobacteria, a clear correlation exists between porin quantity and cephalosporin resistance, suggesting that the outer membrane is the sole barrier to permeabdity. However, such a relationship is not clearly defined for Pseudomonas aeruginosa where additional barriers may be involved (139,144,146). [Pg.30]

It is possible that the stationary-state situations leading to an active ion transport occur only in localized regions of the membrane, i.e., at ATPase molecule units with diameters of about 50 A and a length of 80 A. The vectorial ion currents at locations with a mixed potential and special equipotential lines would appear phenomenologically like ionic channels. If the membrane area where the passive diffusion occurs is large, it may determine the rest potential of the whole cell. [Pg.239]

Additional cellular events linked to the activity of blood pressure regulating substances involve membrane sodium transport mechanisms Na+/K.+ ATPase Na+fLi countertransport Na+ -H exchange Na+-Ca2+ exchange Na+-K+ 2C1 transport passive Na+ transport potassium channels cell volume and intracellular pH changes and calcium channels. [Pg.273]

Chloride channels are membrane proteins that allow for the passive flow of anions across biological membranes. As chloride is the most abundant anion under physiological conditions, these channels are often called chloride channels instead of anion channels, even though other anions (such as iodide or nitrate) may permeate better. As some CLC proteins function as CF-channels, whereas other perform CF/H+-exchangers are also mentioned here. [Pg.371]

The outer membrane of gram-negative bacteria is a permeability barrier that allows the passive diffusion of small hydrophilic antibiotics only through aqueous channels, the porins. Drugs larger than 800 Da are... [Pg.772]

The small particles are reported to be very harmful for human health [98]. To remove particulate emissions from diesel engines, diesel particulate filters (DPF) are used. Filter systems can be metallic and ceramic with a large number of parallel channels. In applications to passenger cars, only ceramic filters are used. The channels in the filter are alternatively open and closed. Consequently, the exhaust gas is forced to flow through the porous walls of the honeycomb structure. The solid particles are deposited in the pores. Depending on the porosity of the filter material, these filters can attain filtration efficiencies up to 97%. The soot deposits in the particulate filter induce a steady rise in flow resistance. For this reason, the particulate filter must be regenerated at certain intervals, which can be achieved in the passive or active process [46]. [Pg.155]

Numbering up microchannels to large-scale capacity reactors is driven by a rigorous understanding of pressure drop in every parallel circuit Passive flow distribution permits sufficient flow to each channel. No serious evaluation of microvalves or actuators has been undertaken for high-capacity systems with thousands to tens... [Pg.243]

The saxitoxins function by binding to a site on the extracellular surface of the voltage-activated sodium channel, interrupting the passive inward flux of sodium ions that would normally occur through the channel while it is in a conducting... [Pg.49]

It is well recognized that is an important regulatory element for many cellular processes, and that the major entry pathway for Ca in many cell types is via plasma membrane Ca channels. Ca channels are functional pores in membranes. They exist in plasma membranes, transverse tubule membranes and in intracellular membranes such as the sarcoplasmic and endoplasmic reticulum. Ca channels are normally closed when opened, Ca passively flows through the chan-... [Pg.315]

It is clearly impossible to give a comprehensive overview of this rapidly expanding field. I have chosen a few experts in their field to discuss one (class of) transport protein(s) in detail. In the first five chapters pumps involved in primary active transport are discussed. These proteins use direct chemical energy, mostly ATP, to drive transport. The next three chapters describe carriers which either transport metabolites passively or by secondary active transport. In the last three chapters channels are described which allow selective passive transport of particular ions. The progress in the latter field would be unthinkable without the development of the patch clamp technique. The combination of this technique with molecular biological approaches has yielded very detailed information of the structure-function relationship of these channels. [Pg.352]

The micro reactor was specially made for fluorination reactions. Before carrying out the fluorination reactions, passivity of the micro reactor has to be ensured by exposure of the micro channel to increasing concentrations of fluorine in nitrogen [16]. [Pg.585]

Ordinarily, when the current pulse is over, the excess charges will be drained through the passive transport channels, and by operation of the sodium-potassium pumps the original values of membrane potential and of the concentration gradients will be reestablished. However, when in the case of depolarization the negative value of cp has dropped below a certain threshold value, which is about -50 mV, the picture changes drastically Excitation of the membrane occurs. When the current is turned off, the membrane potential not only fails to be restored but continues to... [Pg.580]

The TFTs are made on transparent glass substrates, onto which gate electrodes are patterned. Typically, the gate electrode is made of chromium. This substrate is introduced in a PECVD reactor, in which silane and ammonia are used for plasma deposition of SiN as the gate material. After subsequent deposition of the a-Si H active layer and the heavily doped n-type a-Si H for the contacts, the devices are taken out of the reactor. Cr contacts are evaporated on top of the structure. The transistor channel is then defined by etching away the top metal and n-type a-Si H. Special care must be taken in that the etchant used for the n-type a-Si H also etches the intrinsic a-Si H. Finally the top passivation SiN, is deposited in a separate run. This passivation layer is needed to protect the TFT during additional processing steps. [Pg.179]

More simply, in the early regions of the tubule (proximal tubule and Loop of Henle), Na+ ions leave the lumen and enter the tubular epithelial cells by way of passive facilitated transport mechanisms. The diffusion of Na+ ions is coupled with organic molecules or with other ions that electrically balance the flux of these positively charged ions. In the latter regions of the tubule (distal tubule and collecting duct), Na+ ions diffuse into the epithelial cells through Na+ channels. [Pg.319]

Formation of Na+ channels in the luminal membrane of the tubular epithelial cells (facilitates passive diffusion of Na+ ions into the cell)... [Pg.320]

Formation of Na+, K+-ATPase carrier molecules in the basolateral membrane of the tubular epithelial cells (promotes extrusion of Na+ ions from the cells and their movement into plasma by way of peritubular capillaries enhances the concentration gradient for passive diffusion through Na+ channels in the luminal membrane)... [Pg.320]

Water reabsorption. Water is reabsorbed passively by way of osmosis from many regions of the tubule. As with sodium and chloride, 65% of the filtered water is reabsorbed from the proximal tubule. An additional 15% of the filtered water is reabsorbed from the descending limb of the Loop of Henle. This reabsorption occurs regardless of the water content of the body. The water enters the tubular epithelial cells through water channels, also referred to as aquaporins. These channels are always open in the early regions of the tubule. [Pg.320]


See other pages where Passive channels is mentioned: [Pg.275]    [Pg.92]    [Pg.275]    [Pg.92]    [Pg.249]    [Pg.2300]    [Pg.229]    [Pg.248]    [Pg.430]    [Pg.298]    [Pg.700]    [Pg.1053]    [Pg.371]    [Pg.481]    [Pg.12]    [Pg.52]    [Pg.221]    [Pg.302]    [Pg.242]    [Pg.286]    [Pg.356]    [Pg.424]    [Pg.2]    [Pg.2]    [Pg.10]    [Pg.15]    [Pg.35]    [Pg.67]    [Pg.728]    [Pg.728]    [Pg.131]    [Pg.447]    [Pg.354]    [Pg.318]   
See also in sourсe #XX -- [ Pg.222 ]




SEARCH



© 2024 chempedia.info