Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ceramics, advanced nonoxide

Vapor-Phase Techniques. Vapor-phase powder synthesis teclmiques, including vapor condensation, vapor decomposition, and vapor—vapor, vapor—Hquid, and vapor—soHd reactions, employ reactive vapors or gases to produce high purity, ultrafine, reactive ceramic powders. Many nonoxide powders, eg, nitrides and carbides, for advanced ceramics are prepared by vapor-phase synthesis. [Pg.305]

Boron-containing nonoxide amorphous or crystalline advanced ceramics, including boron nitride (BN), boron carbide (B4C), boron carbonitride (B/C/N), and boron silicon carbonitride Si/B/C/N, can be prepared via the preceramic polymers route called the polymer-derived ceramics (PDCs) route, using convenient thermal and chemical processes. Because the preparation of BN has been the most in demand and widespread boron-based material during the past two decades, this chapter provides an overview of the conversion of boron- and nitrogen-containing polymers into advanced BN materials. [Pg.121]

In the last 10 years, significant advances in fibrous monolithic ceramics have been achieved. A variety of materials in the form of either oxide or nonoxide ceramic for cell and cell boundary have been investigated [1], As a result of these efforts, FMs are now commercially available from the ACR company [28], These FMs are fabricated by a coextrusion process. In addition, the green fiber composite can then be wound, woven, or braided into the shape of the desired component. The applications of these FMs involve solid hot gas containment tubes, rocket nozzles, body armor plates, and so forth. Such commercialization of FMs itself proves that these ceramic composites are the most promising structural components at elevated temperatures. [Pg.28]

The last quarter of the twentieth century saw tremendous advances in the processing of continuous, fine diameter ceramic fibers. Figure 6.4 provides a summary of some of the important synthetic ceramic fibers that are available commercially. We have included in Fig. 6.4 two elemental fibers, carbon and boron, while we have excluded the amorphous, silica-based glasses. Two main categories of synthetic ceramic fibers are oxide and nonoxides. A prime example of oxide fibers is alumina while that of nonoxide fibers is silicon carbide. An important subclass of oxide fibers are silica-based glass fibers and we devote a separate chapter to them because of their commercial importance (see chapter 7). There are also some borderline ceramic fibers such as the elemental boron and carbon fibers. Boron fiber is described in this chapter while carbon fiber is described separately, because of its commercial importance, in Chapter 8. [Pg.141]

Desmaison, J., 1990, High temperature oxidation of nonoxide structural ceramics use of advanced protective coatings, in High Temperature Corrosion of Technical Ceramics (RJ. Fordham, Ed.), Elsevier Applied Science, London, U.K., p. 93. [Pg.407]

The history of ceramics is as old as civilization, and our use of ceramics is a measure of the technological progress of a civilization. Ceramics have important effects on human history and human civilization. Earlier transitional ceramics, several thousand years ago, were made by clay minerals such as kaolinite. Modem ceramics are classified as advanced and fine ceramics. Both include three distinct material categories oxides such as alumina and zirconia, nonoxides such as carbide, boride, nitride, and silicide, as well as composite materials such as particulate reinforced and fiber reinforced combinations of oxides and nonoxides. These advanced ceramics, made by modem chemical compounds, can be used in the fields of mechanics, metallurgy, chemistry, medicine, optical, thermal, magnetic, electrical and electronics industries, because of the suitable chemical and physical properties. In particular, photoelectron and microelectronics devices, which are the basis of the modern information era, are fabricated by diferent kinds of optical and electronic ceramics. In other words, optical and electronic ceramics are the base materials of the modern information era. [Pg.237]

Standard guide for high temperature Oxidation testing of nonoxide advanced ceramics at atmospheric pressures and low gas velocities Test method for continuous oxidation test at elevated temperatures for metallic materials Method of cyclic oxidation testing at elevated temperatures for metallic materials... [Pg.280]


See other pages where Ceramics, advanced nonoxide is mentioned: [Pg.121]    [Pg.352]    [Pg.352]    [Pg.318]    [Pg.325]    [Pg.933]    [Pg.939]    [Pg.335]    [Pg.318]    [Pg.325]    [Pg.251]    [Pg.318]    [Pg.325]    [Pg.376]    [Pg.463]    [Pg.161]    [Pg.161]    [Pg.396]    [Pg.376]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Ceramics advanced

Nonoxide

Nonoxide ceramics

Nonoxides

Nonoxidizing

© 2024 chempedia.info