Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gas-phase powder synthesis

Gas phase ceramic synthesis is the subject of several review papers. The treatment here is analogous to that in Magan [1], Friedlander [2], and Pratsinis and Kodas [3] but instead of using the traditional aerosol nomenclature, this chapter uses the nomenclature developed in Chapter 3 on population balances for educational continuity. Each of the gas phase powder synthesis methods is summarized in Table 7.1. The maximum temperatures are also listed. The adiabatic flame temperature is the maximum possible temperature achieved in flame synthesis and will depend on the concentration of reactants in the feed. Powder synthesis in a furnace uses conduction, convection, and radiation, giving a maximum temperature of 2300 K. A plasma is an ionized gas. High velocity electrons remove other electrons from the neutral gas molecules present in the plasma, thereby producing ions and electrons that sustain the plasma. [Pg.257]

One case that is common in gas phase powder synthesis occurs when, after nucleation, the growth is controlled by the chemical reaction. In this case, the mass flux due to chemical reaction can be related to the growth rate, giving... [Pg.279]

The generic apparatus used in a vapor precursor process is very similar to that used in spray pyrolysis, except that the precursor material is introduced to the reactor as a vapor (see Figure 2.1, 2. la). If the precursor is a liquid, carrier gas is typically bubbled through it. If the precursor is a solid, then the carrier gas is often passed through a heated, packed bed of the material. The vapor-laden carrier gas then flows to a furnace reactor, where thermal decomposition of the precursor occurs and particle formation results. Product powder is collected or measured at the reactor outlet. Flame processes also fall into the vapor precursor/thermal decomposition category of gas-phase powder synthesis. The only difference is that the thermal energy is provided by combustion as opposed to an external source. [Pg.33]

Throughout this work, more emphasis is placed on the SHS mode of synthesis rather than the VCS mode because more information is available for SHS. Also, note that in this review, we do not consider production of powders by gas-phase combustion synthesis processes (e.g., Calcote et al, 1990 Davis et al, 1991). [Pg.84]

G s-Ph se Synthesis. A gas-phase synthesis route to making fine, pure SiC having controllable properties has been described (78,79). Methane was used as a carbon source if required, and the plasma decomposition of three feedstocks, siUcon tetrachloride [10026-04-7] SiCl, dimethyl dichi orosilane, and methyltrichlorosilane [75-79-6] CH Cl Si, into fine SiC powders was investigated. [Pg.466]

The most intensive development of the nanoparticle area concerns the synthesis of metal particles for applications in physics or in micro/nano-electronics generally. Besides the use of physical techniques such as atom evaporation, synthetic techniques based on salt reduction or compound precipitation (oxides, sulfides, selenides, etc.) have been developed, and associated, in general, to a kinetic control of the reaction using high temperatures, slow addition of reactants, or use of micelles as nanoreactors [15-20]. Organometallic compounds have also previously been used as material precursors in high temperature decomposition processes, for example in chemical vapor deposition [21]. Metal carbonyls have been widely used as precursors of metals either in the gas phase (OMCVD for the deposition of films or nanoparticles) or in solution for the synthesis after thermal treatment [22], UV irradiation or sonolysis [23,24] of fine powders or metal nanoparticles. [Pg.234]

O. Friedrichs, L. Kolodziejczyk, J.C. S4nchez-L6pez, C. Lopez-Cartes, A. Fernandez, Synthesis of nanocrystaUine MgH powder by gas-phase condensation and in situ hydrida-tion TEM, XPS and XRD study, J. Alloys Compd. 434-435 (2007) 721-724. [Pg.185]

Besides the already mentioned techniques, a low-temperature plasma has been adopted to enhance the reaction in CVC. Through the synthesis of AIN UFPs by an RF-plasma-enhanced CVC using trimethylaluminum [A1(CH3)3] and NH3 as reactants, the effect of experimental parameters on the rate of powder formation, particle size, and structure was examined (60). A high RF current was primarily connected to a high electron density, which activated the gas-phase reaction to promote the powder formation rate. The increase of both susceptor temperature and A1(CH3)3 concentration also increased the powder formation rate and enhanced the grain growth, where both mechanisms—coalescence by particle collision and vapor deposition on to particle surfaces—were believed to occur. [Pg.420]

Powder Formation. Metallic powders can be formed by any number of techniques, including the reduction of corresponding oxides and salts, the thermal dissociation of metal compounds, electrolysis, atomization, gas-phase synthesis or decomposition, or mechanical attrition. The atomization method is the one most commonly used, because it can produce powders from alloys as well as from pure metals. In the atomization process, a molten metal is forced through an orifice and the stream is broken up with a jet of water or gas. The molten metal forms droplets to minimize the surface area, which solidify very rapidly. Currently, iron-nickel-molybdenum alloys, stainless steels, tool steels, nickel alloys, titanium alloys, and aluminum alloys, as well as many pure metals, are manufactured by atomization processes. [Pg.699]

In general, carbides, nitrides, and borides are manufactured in the vapor phase in order to form high-purity powders. This procedure is fundamentally different than a strict CVD process, since in powder synthesis reactors, deposition on seed particles may be desirable, but deposition on the reactor walls represents a loss of product material. As we will see, in CVD, heterogeneous deposition on a surface will be sought. Aside from this issue of deposition, many of the thermodynamic and kinetic considerations regarding gas phase reactions are similar. [Pg.732]

In addition to single-component powders, gas-phase synthesis can be used to produce composite powders, such as SiC and BN. An example of an apparatus used for this particular synthesis, which is representative of the apparatuses used for most gas-phase synthesis of particles, is shown in Figure 7.38. [Pg.738]

Chapter 5 will be devoted to solid phase synthesis of ceramic powders Chapter 6, to liquid phase synfiiesis and Chapter 7, to gas phase synthesis. Other miscellaneous methods of ceramic powder synthesis are discussed in Chapter 8. All of these ceramic powder synthesis methods have one thing in common, the generation of particles with a particular particle sized distribution. To predict the particle size distribution a population balance is used. The concept of population balances on both the micro and... [Pg.81]

This chapter discusses four methods of gas phase ceramic powder synthesis by flames, fiunaces, lasers, and plasmas. In each case, the reaction thermodynamics and kinetics are similar, but the reactor design is different. To account for the particle size distribution produced in a gas phase synthesis reactor, the population balance must account for nudeation, atomistic growth (also called vapor condensation) and particle—particle segregation. These gas phase reactors are real life examples of idealized plug flow reactors that are modeled by the dispersion model for plve flow. To obtain narrow size distribution ceramic powders by gas phase synthesis, dispersion must be minimized because it leads to a broadening of the particle size distribution. Finally the gas must be quickly quenched or cooled to freeze the ceramic particles, which are often liquid at the reaction temperature, and thus prevent further aggregation. [Pg.255]

Chapter 7 Powder Synthesis with Gas Phase Reactants... [Pg.256]


See other pages where Gas-phase powder synthesis is mentioned: [Pg.256]    [Pg.257]    [Pg.30]    [Pg.40]    [Pg.256]    [Pg.257]    [Pg.30]    [Pg.40]    [Pg.280]    [Pg.433]    [Pg.243]    [Pg.54]    [Pg.176]    [Pg.356]    [Pg.736]    [Pg.390]    [Pg.98]    [Pg.20]    [Pg.21]    [Pg.73]    [Pg.86]    [Pg.11]    [Pg.134]    [Pg.14]    [Pg.203]    [Pg.83]    [Pg.255]    [Pg.258]    [Pg.265]   
See also in sourсe #XX -- [ Pg.259 , Pg.264 , Pg.307 ]




SEARCH



Gas-phase synthesis (

Gases synthesis gas

Powder synthesis

© 2024 chempedia.info