Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cells mass transfer

Scanned probe microscopies (SPM) that are capable of measuring either current or electrical potential are promising for in situ characterization of nanoscale energy storage cells. Mass transfer, electrical conductivity, and the electrochemical activity of anode and cathode materials can be directly quantified by these techniques. Two examples of this class of SPM are scanning electrochemical microscopy (SECM) and current-sensing atomic force microscopy (CAFM), both of which are commercially available. [Pg.241]

The PBI-based PEM fuel cell can operate from 120°C to 200°C without external humidification. AC impedance shows that kinetics resistance decreases at higher temperatures, as shown in Figure 6.53, which is different from the characteristics of Nafion -based PEM fuel cells at high temperatures, but is consistent with the performance trend of the PBI-based PEM fuel cells, as shown in Figure 6.54. Although there is no humidification of the reactant streams in the operation of PBI PEM fuel cells, mass transfer issues are still observed through AC impedance, as shown in Figure 6.55. [Pg.319]

Perrier-Comet, J.M., Marechal, J.M., and Gervais, P. A new design intended to relate high-pressure treatment to yeast-cell mass transfer, /. BiotechnoL, 41, 49, 1995. [Pg.231]

Fouling could be related to concentration polarisation, which has been calculated for the stirred cell mass transfer coefficient and crossflow systems. Solubility tests showed that in both systems the solubility of calcium and organics is exceeded at the fluxes typical for NF. Operation at low flux, low transmembrane pressure and high shear reduces the deposition of insoluble matter at the membrane surface and thus minimises fouling. [Pg.278]

The optimal design of liquid-junction photovoltaic cells shares constraints with solid-state photovoltaic cells.25 209 Current collectors cast shadows and can reduce the amount of sunlight absorbed in the semiconductor. A constraint unique to the liquid-junction cell is the placement of the counterelectrode relative to the semiconductor-electrolyte interface. Shadows, which reduce efficiency and cause local currents in solid-state photovoltaic cells, may lead to localized corrosion in photoelectrochemical cells. Mass-transfer and kinetic limitations at the counterelectrode and resistance of the electrolyte can play important roles in the optimal design of the liquid-junction photovoltaic cell. These considerations are treated qualitatively by Parkinson.210... [Pg.91]

The gas-liquid and liquid-cell mass transfer steps are in series. The last step in the growth/differentiation of the cell is the biological uptake of oxygen by the cell. This... [Pg.284]

In most battery and fuel cell systems, part or all of the reactants are supplied from the electrode phase and part or all of the reaction products must diffuse or be transported away from the electrode surface. The cell should have adequate electrolyte transport to facilitate the mass transfer to avoid building up excessive concentration polarization. Proper porosity and pore size of the electrode, adequate thickness and structure of the separator, and sufficient concentration of the reactants in the electrolyte are very important to ensure functionality of the cell. Mass-transfer limitations should be avoided for normal operation of the cell. [Pg.37]

To speed up the process of attainment of the temperature steady value one can use special operations calculation without a kiln rotation, using large time intervals and calculation in two-dimensional R-tp geometry without regard for heat and mass transfer along an axis The program for realization of discussed simulation algorithms enables to calculate temperature in cells, a total number of which can not exceed 130 thousands A circular kiln structure can contain up to three layers. [Pg.421]

Interfacial Contact Area and Approach to Equilibrium. Experimental extraction cells such as the original Lewis stirred cell (52) are often operated with a flat Hquid—Hquid interface the area of which can easily be measured. In the single-drop apparatus, a regular sequence of drops of known diameter is released through the continuous phase (42). These units are useful for the direct calculation of the mass flux N and hence the mass-transfer coefficient for a given system. [Pg.64]

The standard potential for the anodic reaction is 1.19 V, close to that of 1.228 V for water oxidation. In order to minimize the oxygen production from water oxidation, the cell is operated at a high potential that requires either platinum-coated or lead dioxide anodes. Various mechanisms have been proposed for the formation of perchlorates at the anode, including the discharge of chlorate ion to chlorate radical (87—89), the formation of active oxygen and subsequent formation of perchlorate (90), and the mass-transfer-controUed reaction of chlorate with adsorbed oxygen at the anode (91—93). Sodium dichromate is added to the electrolyte ia platinum anode cells to inhibit the reduction of perchlorates at the cathode. Sodium fluoride is used in the lead dioxide anode cells to improve current efficiency. [Pg.67]

Mass Transport. Probably the most iavestigated physical phenomenon ia an electrode process is mass transfer ia the form of a limiting current. A limiting current density is that which is controlled by reactant supply to the electrode surface and not the appHed electrode potential (42). For a simple analysis usiag the limiting current characteristics of various correlations for flow conditions ia a parallel plate cell, see Reference 43. [Pg.88]

Tank Cells. A direct extension of laboratory beaker cells is represented in the use of plate electrodes immersed into a lined, rectangular tank, which may be fitted with a cover for gas collection or vapor control. The tank cell, which is usually undivided, is used in batch or semibatch operations. The tank cell has the attraction of being both simple to design and usually inexpensive. However, it is not the most suitable for large-scale operation or where forced convection is needed. Rotating cylinders or rotating disks have been used to overcome mass-transfer problems in tank cells. An example for electroorganic synthesis is available (46). [Pg.90]

M. Luoma, P. Lappi, and R. Lylykangas, Evaluation of High Cell Density E-Flow Catalyst, SAE 930940, Society of Automotive Engineers, Warrendale, Pa., 1993. Good reference for mass-transfer limited model reactions. [Pg.495]

In the mass-transfer limited region, conversion is most commonly increased by using more catalyst volume or by increasing cell density, which increases the catalytic wall area per volume of catalyst. When the temperature reaches a point where thermal oxidation begins to play a role, catalyst deactivation may become a concern. [Pg.504]

Danckwerts and Gillham did not investigate the influence of the gas-phase resistance in their study (for some processes gas-phase resistance may be neglected). However, in 1975 Danckwerts and Alper [Trans. Tn.st. Chem. Eng., 53, 34 (1975)] showed that by placing a stirrer in the gas space of the stirred-cell laboratoiy absorber, the gas-phase mass-transfer coefficient fcc in the laboratoiy unit could be made identical to that in a packed-tower absorber. When this was done, laboratoiy data obtained for chemically reacting systems having a significant gas-side resistance coiild successfully be sc ed up to predict the performance of a commercial packed-tower absorber. [Pg.1366]

FIG. 18-28 Usually, the gas-liquid mass-transfer coefficient, K, is reduced with increased viscosity. This shows the effect of increased concentration of microbial cells in a fermentation process. [Pg.1636]

The membranes are supported and kept apart by feed spacers. A typical cell gap is 0.5-2 mm. The spacer also helps control solution distribution and enhances mass transfer to the membrane. Given that an industrial stack may have up to 500 cell pairs, assuring uniform flow distribution is a major design requirement. [Pg.2031]

For many laboratoiy studies, a suitable reactor is a cell with independent agitation of each phase and an undisturbed interface of known area, like the item shown in Fig. 23-29d, Whether a rate process is controlled by a mass-transfer rate or a chemical reaction rate sometimes can be identified by simple parameters. When agitation is sufficient to produce a homogeneous dispersion and the rate varies with further increases of agitation, mass-transfer rates are likely to be significant. The effect of change in temperature is a major criterion-, a rise of 10°C (18°F) normally raises the rate of a chemical reaction by a factor of 2 to 3, but the mass-transfer rate by much less. There may be instances, however, where the combined effect on chemical equilibrium, diffusivity, viscosity, and surface tension also may give a comparable enhancement. [Pg.2116]

Hh and Hg are the height of heat and mass transfer units, respectively, in multiples of the cell height, 1. H and M are the same in dimensionless units. [Pg.160]

Enzymatic reactions frequently undergo a phenomenon referred to as substrate inhibition. Here, the reaction rate reaches a maximum and subsequently falls as shown in Eigure 11-lb. Enzymatic reactions can also exhibit substrate activation as depicted by the sigmoidal type rate dependence in Eigure 11-lc. Biochemical reactions are limited by mass transfer where a substrate has to cross cell walls. Enzymatic reactions that depend on temperature are modeled with the Arrhenius equation. Most enzymes deactivate rapidly at temperatures of 50°C-100°C, and deactivation is an irreversible process. [Pg.838]


See other pages where Cells mass transfer is mentioned: [Pg.125]    [Pg.576]    [Pg.48]    [Pg.209]    [Pg.254]    [Pg.283]    [Pg.284]    [Pg.285]    [Pg.2369]    [Pg.431]    [Pg.79]    [Pg.1196]    [Pg.125]    [Pg.576]    [Pg.48]    [Pg.209]    [Pg.254]    [Pg.283]    [Pg.284]    [Pg.285]    [Pg.2369]    [Pg.431]    [Pg.79]    [Pg.1196]    [Pg.1942]    [Pg.286]    [Pg.537]    [Pg.88]    [Pg.88]    [Pg.89]    [Pg.90]    [Pg.92]    [Pg.92]    [Pg.1642]    [Pg.1643]    [Pg.2031]    [Pg.2142]    [Pg.871]    [Pg.296]   
See also in sourсe #XX -- [ Pg.228 ]




SEARCH



Cell membranes, limiting mass transfer

Electrolytic cell mass transfer

Foaming in Cell Culture Systems Effects on Hydrodynamics and Mass Transfer

Liquid-cell mass transfer

Liquid-cell mass transfer culture

Mass Transfer Resistance in Fuel Cells

Mass Transfer in Fuel Cells

Mass transfer plant cell cultures

Transference cells

© 2024 chempedia.info