Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

CEC Phases

The use of bilayer coatings was reported from Kapnissi et al. [31], where a permanently adsorbed coating of a cationic polymer salt [poly(diaIlymethylammo-nium chloride)] was covered with a dynamically adsorbed polymeric surfactant [poly (sodium undecylenic sulfate)]. In contrast to the stable coatings, the adsorbed layers can be easily prepared. Traditionally, polymeric surfactants have been used in MEKC [38] and the separation principle can therefore be transferred to o-CEC. However, several other types of dynamically attached pseudo-stationary phases (PSPs) exist, such as cyclodextrins [39], dendrimers [40], proteins [41], liposomes [42], ionenes [43], siloxanes [44] micelles [3, 38] and microemulsions [45]. Comparisons between MEEKC and MEKC are often made, as their separation basis is similar [46-48]. In MEKC, surfactant molecules form micelles and solutes dissolve in them, which facilitates separation. Solutes can penetrate a microemulsion droplet more easily than a more rigid micelle and the loadability of a droplet compared with a micelle is much higher. [Pg.354]

However, an alternative to using surfactant systems is to use nanopartide-based PSPs directly. They are more compatible with mass spectrometric (MS) detection and do not hamper electrospray ionization (ESI) [49]. In that respect, nanopartides from silica [50], gold [51] and polymers [52] and even molecularly imprinted nanoparticles [53] have been used. Imprinting is based on a technique for tailor-making network polymers, where templates for a specific solute give a high separation affinity. [Pg.354]


The CEC phases must be capable of carrying a charge to generate an EOE and appropriate moieties to facilitate the chromatographic processes. Silica-based reversed-phase packing materials have been most widely used in CEC. The use of polymeric and mixed-mode bonded particles has also been reported. Eor the silica-based phases, the carbon chains bonded on the silica surface provide the retention and selectivity for analytes, and the residual silanol groups on the surface of the silica are ionizable and generate the EOF. [Pg.452]

In recent years, a small number of new phases have become available that are more suited to CEC. Phase Separations (Deeside. UK) have produced a SCX stationary phase. This is a strong cation-exchange material which contains aminopropyl-derivatised silica that has sulphonic acid groups covalently attached to the amino end of a short alkyl chain. The sulphonic acid groups are effectively ionised at all working pHs due to their low p/faS. Fig. 4.5 shows the dependence of EOF on pH of the mobile phase for a capillary packed with Phase Separations SCX stationary phase. The EOF is almost the same over the whole range. It increases beyond pH 7, presumably due to the added ionisation of the surface silanols. [Pg.128]

Capillary Electrochromatography Another approach to separating neutral species is capillary electrochromatography (CEC). In this technique the capillary tubing is packed with 1.5-3-pm silica particles coated with a bonded, nonpolar stationary phase. Neutral species separate based on their ability to partition between the stationary phase and the buffer solution (which, due to electroosmotic flow, is the mobile phase). Separations are similar to the analogous HPLC separation, but without the need for high-pressure pumps, furthermore, efficiency in CEC is better than in HPLC, with shorter analysis times. [Pg.607]

Miniaturized columns have provided a decisive advantage in speed. Uracil, phenol, and benzyl alcohol were separated in 20 seconds by CEC in an 18 mm column with a propyl reversed phase.29 A19 cm electrophoretic channel was etched into a glass wafer, filled with a y-cyclodextrin buffer, and used to resolve chiral amino acids from a meteorite in 4 minutes.30 A 6 cm channel equipped with a syringe pump to automate sample derivatization was used to separate amino acids modified with fluorescein isothiocyanate.31 Nanovials have been used to perform tryptic digests on the 15 nL scale for subsequent separation on capillary Electrophoresis.32 A microcolumn has also been used to generate fractions representing time-points of digestion from a 40 pL sample.33 A disposable nanoelectrospray emitter has been... [Pg.429]

In SFE-GC, LC-CEC, LC-SFC and LC-GC, increasing difficulty (in this order) is experienced in the change of mobile phase. [Pg.547]

The clay ion-exchange model assumes that the interactions of the various cations in any one clay type can be generalized and that the amount of exchange will be determined by the empirically determined cation-exchange capacity (CEC) of the clays in the injection zone. The aqueous-phase activity coefficients of the cations can be determined from a distribution-of-species code. The clay-phase activity coefficients are derived by assuming that the clay phase behaves as a regular solution and by applying conventional solution theory to the experimental equilibrium data in the literature.1 2 3... [Pg.831]

As yet, the number of applications is limited but is likely to grow as instrumentation, mostly based on existing CE systems, and columns are improved and the theory of CEC develops. Current examples include mixtures of polyaromatic hydrocarbons, peptides, proteins, DNA fragments, pharmaceuticals and dyes. Chiral separations are possible using chiral stationary phases or by the addition of cyclodextrins to the buffer (p. 179). In theory, the very high efficiencies attainable in CEC mean high peak capacities and therefore the possibility of separating complex mixtures of hundreds of... [Pg.648]

CEC is comparable to MECC, but with the major difference that the micelles are replaced by very small, i.e. less than 3 pm, solid or semi-solid particles in a packed or open column. The particles form a typical stationary phase as we know from ordinary HPLC. The mobile phase is obtained through the electrically driven flow resulting from... [Pg.619]

The main bottleneck in the further development of CEC is related with the state of the art of the column manufacturing processes and the robustness of the columns/instrumentation. Moreover, evidence to demonstrate reproducibility of separations from column to column still has to be established. The formation of bubbles in the capillaries due to the Joule heating and variations in EOF velocity on passing from the stationary phase through the frit and into the open tube is still very challenging in packed column CEC. A way to overcome this problem is to use monolithic columns or apply open tubular CEC [108]. Currently, many efforts are placed in improving column technology and in the development of chip-CEC [115] as an attractive option for lab-on-a-chip separations. [Pg.620]

This overview concerns the new chromatographic method - capillary electrochromatography (CEC) - that is recently receiving remarkable attention. The principles of this method based on a combination of electroosmotic flow and analyte-stationary phase interactions, CEC instrumentation, capillary column technology, separation conditions, and examples of a variety of applications are discussed in detail. [Pg.4]

The plug flow profile would only be distorted in very narrow bore capillaries with a diameter smaller than the thickness of two double-layers that then overlap. To achieve an undisturbed flow, Knox suggested that the diameter should be 10-40 times larger than 6 [15]. This can easily be achieved in open capillaries. However, once the capillary is packed with a stationary phase, typically small modified silica beads that carry on their own charged functionalities, the distance between adjacent double-layers is only a fraction of the capillary diameter. However, several studies demonstrated that beads with a submicrometer size can be used safely as packings for CEC columns run in dilute buffer solutions [15,35]. [Pg.9]

CEC is often inappropriately presented as a hybrid method that combines the capillary column format and electroosmotic flow employed in high-performance capillary electrophoresis with the use of a solid stationary phase and a separation mechanism, based on specific interactions of solutes with the stationary phase, characteristic of HPLC. Therefore CEC is most commonly implemented by means typical of both HPLC (packed columns) and CE (use of electrophoretic instrumentation). To date, both columns and instrumentation developed specifically for CEC remain scarce. [Pg.14]


See other pages where CEC Phases is mentioned: [Pg.119]    [Pg.279]    [Pg.176]    [Pg.175]    [Pg.354]    [Pg.119]    [Pg.279]    [Pg.176]    [Pg.175]    [Pg.354]    [Pg.61]    [Pg.263]    [Pg.332]    [Pg.337]    [Pg.786]    [Pg.463]    [Pg.289]    [Pg.292]    [Pg.429]    [Pg.433]    [Pg.174]    [Pg.274]    [Pg.100]    [Pg.147]    [Pg.148]    [Pg.150]    [Pg.151]    [Pg.154]    [Pg.271]    [Pg.184]    [Pg.185]    [Pg.185]    [Pg.606]    [Pg.191]    [Pg.264]    [Pg.336]    [Pg.620]    [Pg.620]    [Pg.636]    [Pg.3]    [Pg.6]    [Pg.14]    [Pg.14]   


SEARCH



CEC

Stationary phases used in CEC

© 2024 chempedia.info