Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

CD , chiral

There are several criteria for chromophores that are to be used for CD chirality studies ... [Pg.35]

An extremely important aspect in pharmaceutical research is the determination of drug optical purity. The most frequently applied technique for chiral separations in CZE remains the so-called dynamic mode where resolution of enantiomers is carried out by adding a chiral selector directly into the BGE for in situ formation of diastereomeric derivatives. Various additives, such as cyclodextrins (CD), chiral crown ethers, proteins, antibiotics, bile salts, chiral micelles, and ergot alkaloids, are reported as chiral selectors in the literature, but CDs are by far the selectors most widely used in chiral CE. [Pg.486]

Entry Compound Orign of Molar ratio Solvent CD Chirality... [Pg.214]

Tesarova and Bosakova [58] proposed an HPLC method for the enantio-selective separation of some phenothiazine and benzodiazepine derivatives on six different chiral stationary phases (CSPs). These selected CSPs, with respect to the structure of the separated compounds, were either based on b-CD chiral selectors (underivatized (J>-CD and hydroxypropyl ether (3-CD) or on macrocyclic antibiotics (vancomycin, teicoplanin, teicoplanin aglycon and ristocetin A). Measurements were carried out in a reversed-phase separation mode. The influence of mobile phase composition on retention and enantio-selective separation was studied. Enantioselective separation of phenothiazine derivatives, including levopromazine (LPZ), promethazine and thioridazine, was relatively difficult to achieve, but it was at least partly successful with both types of CSPs used in this work (CD-based and glycopeptide-based CSP), except for levomepromazine for which only the [CCD-based CSP was suitable. [Pg.171]

CDs Chiral recognition is based on inclusion of the bulky hydrophobic group of the analyte into the hydrophobic cavity of the CD and on lateral interactions of the hydroxyl groups, such as hydrogen bonds and dipole-dipole interactions, with the analyte. Carboxymethylated P-CD, heptakis- 0-methyl- P-CD, hy dr oxy ethyl- P- CD, mono(6-P-aminoethylamino-6-deoxy)-P-CD, and mono(6-amino-6-deoxy)-P-CD. Acebutolol, acenocoumarol, carnitine, cathinone, ephedrine, epinephrine, glutethimide, ketotifen, thioridazine, etc. [Pg.453]

Rinaldo D, Batista JM, Rodrigues J, Benfatti AC, Rodrigues CM, Dos Santos LC, Furlan M, Vilegas W. Determination of catechin diastereomers from the leaves of Byrsonima species using chiral HPLC-PAD-CD. Chirality 2010 22(8) 726-733. [Pg.1598]

Fig. 20. Formation of CD active species via highly coordinated complexation (above) and CD chirality sensing of phenylalanine with Gd + complex 44 (below). Reproduced, with permission, alter Tsukube and Shinoda (2002). Fig. 20. Formation of CD active species via highly coordinated complexation (above) and CD chirality sensing of phenylalanine with Gd + complex 44 (below). Reproduced, with permission, alter Tsukube and Shinoda (2002).
An especially interesting recent example is Benedetti et al 5 use of circular dicliroism (CD) spectroscopy to detect a pressure-induced change of the configuration at the metal centre of the octahedral chiral A- and A-tris... [Pg.1961]

Magnetic circular dicliroism (MCD) is independent of, and thus complementary to, the natural CD associated with chirality of nuclear stmcture or solvation. Closely related to the Zeeman effect, MCD is most often associated with orbital and spin degeneracies in cliromophores. Chemical applications are thus typically found in systems where a chromophore of high symmetry is present metal complexes, poriihyrins and other aromatics, and haem proteins are... [Pg.2966]

Molecular chirality is most often observed experimentally through its optical activity, which is the elfect on polarized light. The spectroscopic techniques for measuring optical activity are optical rotary dispersion (ORD), circular di-chroism (CD), and vibrational circular dichroism (VCD). [Pg.113]

Cyclodextrins are macrocyclic compounds comprised of D-glucose bonded through 1,4-a-linkages and produced enzymatically from starch. The greek letter which proceeds the name indicates the number of glucose units incorporated in the CD (eg, a = 6, /5 = 7, 7 = 8, etc). Cyclodextrins are toroidal shaped molecules with a relatively hydrophobic internal cavity (Fig. 6). The exterior is relatively hydrophilic because of the presence of the primary and secondary hydroxyls. The primary C-6 hydroxyls are free to rotate and can partially block the CD cavity from one end. The mouth of the opposite end of the CD cavity is encircled by the C-2 and C-3 secondary hydroxyls. The restricted conformational freedom and orientation of these secondary hydroxyls is thought to be responsible for the chiral recognition inherent in these molecules (77). [Pg.64]

Although the usual absorption and scattering spectroscopies caimot distinguish enantiomers, certain techniques are sensitive to optical activity in chiral molecules. These include optical rotatory dispersion (ORD), the rotation by the sample of the plane of linearly polari2ed light, used in simple polarimeters and circular dichroism (CD), the differential absorption of circularly polari2ed light. [Pg.319]

Cyclodextrin stationary phases utilize cyclodextrins bound to a soHd support in such a way that the cyclodextrin is free to interact with solutes in solution. These bonded phases consist of cyclodextrin molecules linked to siUca gel by specific nonhydrolytic silane linkages (5,6). This stable cyclodextrin bonded phase is sold commercially under the trade name Cyclobond (Advanced Separation Technologies, Whippany, New Jersey). The vast majority of all reported hplc separations on CD-bonded phases utilize this media which was also the first chiral stationary phase (csp) developed for use in the reversed-phase mode. [Pg.97]

Appllca.tlons. The first widely appHcable Ic separation of enantiomeric metallocene compounds was demonstrated on P-CD bonded-phase columns. Thirteen enantiomeric derivatives of ferrocene, mthenocene, and osmocene were resolved (7). Retention data for several of these compounds are listed in Table 2, and Figure 2a shows the Ic separation of three metallocene enantiomeric pairs. P-Cyclodextrin bonded phases were used to resolve several racemic and diastereomeric 2,2-binaphthyldiyl crown ethers (9). These compounds do not contain a chiral carbon but stiU exist as enantiomers because of the staggered position of adjacent naphthyl rings, and a high degree of chiral recognition was attained for most of these compounds (9). [Pg.97]

Recently, multidimensional GC has been employed in enantioselective analysis by placing a chiral stationary phase such as a cyclodextrin in the second column. Typically, switching valves are used to heart-cut the appropriate portion of the separation from a non-chiral column into a chiral column. Heil et al. used a dual column system consisting of a non-chiral pre-column (30 m X 0.25 mm X 0.38 p.m, PS-268) and a chiral (30 m X 0.32 mm X 0.64 p.m, heptakis(2,3-di-(9-methyl-6-(9-tert-butyldimethylsilyl)-(3-cyclodextrin) (TBDM-CD) analytical column to separate derivatized urinary organic acids that are indicative of metabolic diseases such as short bowel syndrome, phenylketonuria, tyrosinaemia, and others. They used a FID following the pre-column and an ion trap mass-selective detector following the... [Pg.415]

Incorporation of chiral units into polymers generates optically active polymers.27 Two types of optically active polymers could be obtained according to where the chiral units reside optically active polymers with chirality derived from chiral side chains and optically active polymers with chirality derived from tire chiral main chain. The circular dichroism (CD) measurement of 32, an optically active polymer with chiral side chains, showed that the chiral substituents have induced main-chain chirality. The induced main-chain chirality disappeared at higher temperature and appeared upon cooling. This type of chiral conjugated polymer is potentially useful in reversing optical recording28 ... [Pg.479]

Circular Dichroism Measurements. The absolute configurations of the C6 chiral center in tetrahydrobiopterin cofactor and related compounds were determined by comparison of their circular dichroism (CD) spectra with those of... [Pg.117]

An interesting phenomenon was observed when the CD of chiral molecules was measured in achiral solvents. The chiral solvent contributed as much as 10-20% to the CD intensity in some cases. Apparently, the chiral compound can induce a solvation structure that is chiral, even when the solvent molecules themselves are achiral. ... [Pg.144]

CD and NMR Studies of a Helical Peptoid Pentamer with a-Chiral Aromatic Side Chains... [Pg.14]

Fig. 1.6 A comparison of the CD spectra of oligopeptoids with achiral Npm side chains (1) and with a-chiral, aromatic sidechains of S and R chirality (2 and 6, respectively). Sample concentration was 60 j,M in acetonitrile. Spectra were acquired at room temperature. Npm = (N-[l-phenylmethyljglycine) Nspe= (S)-N-(l -phenylethyl)glycine Nrpe= (R)-N-(l -phenylethyl)glycine... Fig. 1.6 A comparison of the CD spectra of oligopeptoids with achiral Npm side chains (1) and with a-chiral, aromatic sidechains of S and R chirality (2 and 6, respectively). Sample concentration was 60 j,M in acetonitrile. Spectra were acquired at room temperature. Npm = (N-[l-phenylmethyljglycine) Nspe= (S)-N-(l -phenylethyl)glycine Nrpe= (R)-N-(l -phenylethyl)glycine...
Figs. 1.6 and 1.7). This type of CD spectrum is observed for certain heterooligomeric peptoid sequences with as few as 33% chiral aromatic residues, in both aqueous and polar organic solvent (acetonitrile, methanol). [Pg.16]

A peptoid pentamer of five poro-substituted (S)-N-(l-phenylethyl)glycine monomers, which exhibits the characteristic a-helix-like CD spectrum described above, was further analyzed by 2D-NMR [42]. Although this pentamer has a dynamic structure and adopts a family of conformations in methanol solution, 50-60% of the population exists as a right-handed helical conformer, containing all cis-amide bonds (in agreement with modeling studies [3]), with about three residues per turn and a pitch of 6 A. Minor families of conformational isomers arise from cis/trans-amide bond isomerization. Since many peptoid sequences with chiral aromatic side chains share similar CD characteristics with this helical pentamer, the type of CD spectrum described above can be considered to be indicative of the formation of this class of peptoid helix in general. [Pg.16]


See other pages where CD , chiral is mentioned: [Pg.108]    [Pg.142]    [Pg.171]    [Pg.16]    [Pg.152]    [Pg.214]    [Pg.547]    [Pg.1835]    [Pg.636]    [Pg.636]    [Pg.108]    [Pg.142]    [Pg.171]    [Pg.16]    [Pg.152]    [Pg.214]    [Pg.547]    [Pg.1835]    [Pg.636]    [Pg.636]    [Pg.2963]    [Pg.2966]    [Pg.77]    [Pg.378]    [Pg.96]    [Pg.98]    [Pg.98]    [Pg.98]    [Pg.77]    [Pg.78]    [Pg.259]    [Pg.263]    [Pg.89]    [Pg.288]    [Pg.73]    [Pg.327]    [Pg.14]   


SEARCH



CD excition chirality method

CD exciton chirality

CD exciton chirality method

© 2024 chempedia.info