Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cation, definition

It is known that the chemistry of enolates depends on the nature of the metal. Moreover, the metals are an integral part of the structures of enolates. Lithium enolates are most frequently employed, and in the solid state the lithium cations definitely are associated with the heteroatoms rather than with the carbanionic C atoms. Presumably the same is true in solution. The bonding between the heteroatom and the lithium may be regarded as ionic or polar covalent. However, the heteroatom is not the only bonding partner of the lithium cation irrespective of the nature of the bond between lithium and the heteroatom ... [Pg.520]

These mixed metal systems have also been tested with the transient method for catalytic activity in the Fischer-Tropsch reaction. We would like to remark here that the nature of the cation, anion, and zeolite are all important factors in the Fischer-Tropsch reactions that we have studied. Further details of these catalytic studies can be found elsewhere (23). We do observe here, however, that some catalysts that are completely reduced to the metallic state are not necessarily the most active catalysts. Also, even though the Mossbauer experiments suggest that 400°C is sufficient for complete reduction, higher activation temperatures can increase the activity and selectivity of these reactions. We have also observed that the cation definitely changes the product distribution and the activity. [Pg.315]

The location of the cation in these canal compounds is not clear, but the cation definitely influences the nature of the crystal which is formed. With sodium and lithium iodides, a form II type of complex crystallizes as hexagonal plates. In the sodium iodide-iodine complex, the inclusion compound is not stoichiometric but rather the iodine atoms are packed into the canals in linear rows, with a spacing not related to the spacing of the dextrin molecules. [Pg.251]

Description of the Method. The operational definition of water hardness is the total concentration of cations in a sample capable of forming insoluble complexes with soap. Although most divalent and trivalent metal ions contribute to hardness, the most important are Ca + and Mg +. Hardness is determined by titrating with EDTA at a buffered pH of 10. Eriochrome Black T or calmagite is used as a visual indicator. Hardness is reported in parts per million CaCOs. [Pg.326]

Within the scope of the original definition, a very wide variety of ionomers can be obtained by the introduction of acidic groups at molar concentrations below 10% into the important addition polymer families, followed by partial neutralization with metal cations or amines. Extensive studies have been reported, and useful reviews of the polymers have appeared (3—8). Despite the broad scope of the field and the unusual property combinations obtainable, commercial exploitation has been confined mainly to the original family based on ethylene copolymers. The reasons for this situation have been discussed (9). Within certain industries, such as flexible packaging, the word ionomer is understood to mean a copolymer of ethylene with methacrylic or acryhc acid, partly neutralized with sodium or zinc. [Pg.404]

Given stringent requirements for effective sensitizers and the desire to use wavelengths further to the red for therapeutic appHcations, definition of newer sensitizers has been a principal area of research since about 1987. Expanded theoretical and experimental understanding of photophysics has been a key element in identifying new classes of potential sensitizers (93—98). Research has focused on cationic derivatives of Nile Blue (93), metaHo-phthalocyanines (94), naphthalocyanines (95), chlorin-type compounds (96), expanded ring porphyrinoids (97), as well as porphyrins other than hematoporphyrin and its derivatives (98). This work has also been reviewed (10,91). Instmmentation for photodynamic therapy has been reviewed (99). [Pg.395]

The potentiometry sensor (ion-selective electrode) controls application for determination of polymeric surface-active substances now gets the increasing value. Potentiometry sensor controls are actively used due to simple instmment registration, a wide range of determined concentrations, and opportunity of continuous substances contents definition. That less, the ionometry application for the cation polymeric SAS analysis in a solution is limited by complexity of polycation charge determination and ion-exchanger synthesis. [Pg.108]

The largest protonated cluster of water molecules yet definitively characterized is the discrete unit lHi306l formed serendipitously when the cage compound [(CyHin)3(NH)2Cll Cl was crystallized from a 10% aqueous hydrochloric acid solution. The structure of the cage cation is shown in Fig. 14.14 and the unit cell contains 4 [C9H,8)3(NH)2aiCUHnOfiiai- The hydrated proton features a short. symmetrical O-H-0 bond at the centre of symmetry und 4 longer unsymmetrical O-H - 0 bonds to 4... [Pg.631]

Interconversion between two tautomeric structures can occur via discrete cationic or anionic intermediates (scheme 24, where T is an anion capable of reacting with a proton at a minimum of two distinct sites). Alternatively, interconversion can occur by simultaneous loss and gain of different protons (scheme 25, w here T has the same definition as in scheme 24). These mechanisms are well established for acyclic compounds, but they have been much less thoroughly investigated for heteroaromatic systems. The rate of interconversion of two tautomers is greatest when both of the alternative atoms to which the mobile proton can be attached arc hetero atoms, and isolation of the separate isomers is usually impossible in this case. If one of the alternative atoms involved in the tautomerization is carbon, the rate of interconversion is somewhat slower, but still fast. When both of the atoms in question are carbon, however, interconversion is... [Pg.317]

Most of the work done in the pteridine series has been concerned with the equilibria between the neutral species and the anions. This work was more fruitful than that involving the cations because all three of the values, p /, p a , and pK/ (for definitions, see Section II, A), could be determined, and, from these, ratios of the hydrated to the anhydrous forms were calculated. Furthermore, the kinetics in the... [Pg.28]

The cationic polymerization of cardanol under acidic conditions has been referred to earlier [170,171], NMR studies [16] indicated a carbonium ion initiated mechanism for oligomerization. PCP was found to be highly reactive with aldehydes, amines, and isocyates. Highly insoluble and infusible thermoset products could be obtained. Hexamine-cured PCP showed much superior thermal stability (Fig. 12) at temperatures above 500°C to that of the unmodified cardanol-formaldehyde resins. However, it was definitely inferior to phenolic resins at all temperatures. The difference in thermal stability between phenolic and PCP resins could be understood from the presence of the libile hydrocarbon segment in PCP. [Pg.427]

For definiteness, the oxidation of copper to copper(l) oxide may be considered. Our picture of the process is that cation vacancies and positive holes formed at the Cu O/Oj interface by equation, 1.166 are transported to the Cu/CujO interface where they are destroyed by copper dissolving in the non-stoichiometric oxide. We require an expression for the rate of oxidation. [Pg.256]

The fact that a Lewis acid is able to accept an electron pair means that it must have either a vacant, low-energy orbital or a polar bond to hydrogen so that it can donate H+ (which has an empty7 Is orbital). Thus, the Lewis definition of acidity includes many species in addition to H+. For example, various metal cations, such as Mg2+, are Lewis acids because they accept a pair of electrons when they form a bond to a base. We ll also see in later chapters that certain metabolic reactions begin with an acid-base reaction between Mg2+ as a Lewis acid and an organic diphosphate or triphosphate ion as the Lewis base. [Pg.57]

According to the Hiickel criteria for aromaticity, a molecule must be cyclic, conjugated (that is, be nearly planar and have ap orbital on each carbon) and have 4n + 2 tt electrons. Nothing in this definition says that the number of p orbitals and the number of nr elections in those orbitals must be the same. In fact, they can he different. The 4n + 2 rule is broadly applicable to many kinds of molecules and ions, not just to neutral hydrocarbons. For example, both the cydopentadienyl anion and the cycloheptatrienyl cation are aromatic. [Pg.525]


See other pages where Cation, definition is mentioned: [Pg.229]    [Pg.174]    [Pg.229]    [Pg.174]    [Pg.41]    [Pg.147]    [Pg.533]    [Pg.45]    [Pg.169]    [Pg.188]    [Pg.525]    [Pg.515]    [Pg.90]    [Pg.381]    [Pg.625]    [Pg.629]    [Pg.771]    [Pg.2]    [Pg.2]    [Pg.34]    [Pg.5]    [Pg.249]    [Pg.260]    [Pg.686]    [Pg.189]    [Pg.276]    [Pg.21]    [Pg.561]   
See also in sourсe #XX -- [ Pg.8 ]

See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.238 ]




SEARCH



Cation activity, operational definition

Cation-exchange capacity, definition

Cation-radicals definition

Cationic surfactant definition

Cationic vacancies definition

Lewis acid-base definition metal cations

Metal cations definition

Vinyl cations definition

© 2024 chempedia.info