Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic performances

The performance concerning selectivity, activity, productivity and so on, must fulfill the requirements of a given product As a rule of thumb, (enantio) selectivity should be 90-95% turnover numbers (TON) should be 200 for small volume products and reactions with high added value and 10000 for large-volume products and reaction times should not exceed 5-10 h. Furthermore, functional group tolerance will often be important as most substrates will have other functional groups which can either be reduced or which can interfere with the catalyst via complexation. [Pg.3]


The precious metals possess much higher specific catalytic activity than do the base metals. In addition, base metal catalysts sinter upon exposure to the exhaust gas temperatures found in engine exhaust, thereby losing the catalytic performance needed for low temperature operation. Also, the base metals deactivate because of reactions with sulfur compounds at the low temperature end of auto exhaust. As a result, a base metal automobile exhaust... [Pg.487]

Beyond the catalytic ignition point there is a rapid increase in catalytic performance with small increases in temperature. A measure of catalyst performance has been the temperature at which 50% conversion of reactant is achieved. For carbon monoxide this is often referred to as CO. The catalyst light-off property is important for exhaust emission control because the catalyst light-off must occur rehably every time the engine is started, even after extreme in-use engine operating conditions. [Pg.488]

Catalyst Durability. Automobile catalysts last for the life of the vehicle and still function well at the time the vehicle is scrapped. However, there is potential for decline in total catalytic performance from exposure to very high temperatures, accumulation of catalyst poisons, or loss of the active layer (29,64—68). [Pg.489]

Figure 5.4-3 shows the results of a lifetime study for Wilke s catalyst dissolved, activated, and immobilized in the [EMIM][(CF3S02)2N]/compressed CO2 system. Over a period of more than 61 h, the active catalyst showed remarkably stable activity while the enantioselectivity dropped only slightly. These results clearly indicate - at least for the hydrovinylation of styrene with Wilke s catalyst - that an ionic liquid catalyst solution can show excellent catalytic performance in continuous product extraction with compressed CO2. [Pg.287]

Electrochemical promotion or NEMCA is the main concept discussed in this book whereby application of a small current (1-104 pA/cm2) or potential ( 2 V) to a catalyst, also serving as an electrode (electrocatalyst) in a solid electrolyte cell, enhances its catalytic performance. The phenomenology, origin and potential practical applications of electrochemical promotion, as well as its similarities and differences with classical promotion and metal-support interactions, is the main subject of this book. [Pg.10]

As already discussed in Chapter 1, a promoter is a substance which when added to a catalyst, usually on its surface, enhances its catalytic performance, i.e. it increases the rate, r, of a catalytic reaction or the selectivity to a desired product. [Pg.23]

CO2, N2 and N2O production as a function of the catalyst potential, UWR> obtained at 62IK for fixed inlet pressures of NO and CO. A sharp increase in reaction rate and product is observed as the catalyst potential is reduced below 0 V, i.e., upon Na supply to the Pt catalyst. The selectivity to N2, Sn2, is enhanced from 17% to 62%. This dramatic enhancement in catalytic performance is due to (a) enhanced NO vs CO chemisorption on Pt with decreasing potential and (b) Na-induced dissociation of chemisorbed NO. [Pg.448]

Parallel to the modification of the catalytic performance in Baeyer-Villiger oxidations, random mutagenesis was successfully applied to improve the stereoselectivity of CHMOAcineto hi cascs of essentially racemic sulfoxide formation. In addition, enantiodivergent clones with >98% ee for both antipodal products were identified (Table 9.5) [205]. However, improvement in stereoselectivity of mutant enzymes was often accompanied by increased formation of sulfone. This effect can also be utilized to resolve racemic sulfoxides. [Pg.254]

The most commonly encountered inorganic contaminants in waste HBr streams are primarily low level bromide salts such as sodium bromide or calcium bromide. These do not provide a significant challenge to catalytic performance because they are unlikely to enter the catalytic reactor in significant quantities. Instead, the low operating temperature (about 128°C) of the vaporizer would cause them to be retained and concentrated in that vessel. [Pg.310]

The development of new and improved catalysts requires advances in our understanding of how to make catalysts with specified properties the relationships between surface stracture, composition, and catalytic performance the dynamics of chemical reactions occurring at a catalyst surface the deployment of catalytic surface within supporting microstracture and the dynamics of transport to and from that surface. Research opportmuties for chemical engineers are evident in four areas catalyst synthesis, characterization of surface stracture, surface chemistry, and design. [Pg.170]

The aim of the newly introduced mesoporosity is to enhance the utilization of the microporous network by improved accessibihty of the active sites that are mostly present in the micropores. Although numerous papers have reported on the improved catalytic performance of desihcated zeolites in catalysis (details in Section 2.4.5), only few works are available that reaUy tackle the hierarchical nature of the desihcated zeohtes and demonstrate that selective sihcon removal leads to an enhanced physical transport in the zeohte crystals. [Pg.41]

As shown in Table 2.1, the improved catalytic performance of alkaline-treated zeolites compared to the parent purely microporous counterparts has been demonstrated decidedly by different groups active in academia and in industry. The positive effect is reflected in the enhanced activity, selectivity, and/or lifetime (coking resistance) of the hierarchical systems. The examples listed embrace not only a variety of zeohte topologies (MFl, MOR, MTW, BEA, and AST) but also reactions involving hghter hydrocarbons as well as bulky molecules. This illustrates the potential of the desihcation treatment, although more work is to be done in optimizing the catalytic system for the wide variety of applications. [Pg.46]

MicrocrystalUne zeolites such as beta zeolite suffer from calcination. The crystallinity is decreased and the framework can be notably dealuminated by the steam generated [175]. Potential Br0nsted catalytic sites are lost and heteroatoms migrate to extra-framework positions, leading to a decrease in catalytic performance. Nanocrystals and ultrafine zeolite particles display aggregation issues, difficulties in regeneration, and low thermal and hydrothermal stabilities. Therefore, calcination is sometimes not the optimal protocol to activate such systems. Application of zeolites for coatings, patterned thin-films, and membranes usually is associated with defects and cracks upon template removal. [Pg.132]

Ethanol is a nontoxic substance with relatively high H2 content, and its advantage is that it can be produced from renewable sources, for example, from various biomasses and wastes. In addition, purification of the produced reforming gas has been of interest to researchers. Hydrogen purification has been studied, for instance, with membranes [19] which can also have catalytic performances. [Pg.147]

We investigated the catalytic performance of the CU2O coated copper nanoparticles for Ullmann coupling reactions. When the coupling reactions using aryl bromides such as 2-... [Pg.49]

Table 1. Perovskite-type oxides prepared by malic acid method and their catalytic performances... Table 1. Perovskite-type oxides prepared by malic acid method and their catalytic performances...
In the Lai.,CsxMn03 catalyst, the T decreases with an increase of x value and shows an almost constant value upon substitution of x>0.3. It is thought that the oxygen vacancy sites of perovskite oxide increase with an increase of amount of Cs and the oxidation activity also increases. This result is also verified by the TPR result of these catalysts(Fig. 3). As shown in Fig. 3, the reduction peak appears at low temperature with an increase of x value and no change is shown at more than x=0.3. It can thus be concluded that the catalytic performance of these oxides increases as the amount of Cs in the crystal lattice increases. However, the substitution of Cs to more than x=0.3 leads to excess Cs, which is present on the surface of mixed oxides might have no effect on the catalytic activity... [Pg.263]

Fig. 4. Catalytic performance of H3PW12O40 and H3PW12O40/T-AI2O3 catalysts at 330°C (a) 2-propanol conversions and (b) product yields. Fig. 4. Catalytic performance of H3PW12O40 and H3PW12O40/T-AI2O3 catalysts at 330°C (a) 2-propanol conversions and (b) product yields.
In this paper, the preparation, characterization and the catalytic performance of the Moo.esVoasWo.ioOx-mixed oxide as a partial oxidation catalyst for the methanol to formaldehyde reaction was studied. [Pg.274]

The present work demonstrates that the mixed oxide catalyst with inhomogeneous nanocrystalline MosOu-type oxide with minor amount of M0O3- and Mo02-type material. Thermal treatment of the catalyst shows a better performance in the formation of the crystals and the catalytic activity. The structural analysis suggests that the catalytic performance of the MoVW- mixed oxide catalyst in the partial oxidation of methanol is related to the formation of the M05O14 t3 e mixed oxide. [Pg.276]

In this work, catalysts containing iron supported on activated carbon were prepared and investigated for their catalytic performance in the direct production of phenol fiom benzene with hydrogen peroxide and the effect of Sn addition to iron loaded on activated carbon catalyst were also studied. [Pg.278]

To improve selectivity towards phenol 0.5 wt% of Sn was added as a promoter while preparing 5.0Fe/AC catalyst. The catalytic performance of 5.0Fe-0.5Sn/AC catalyst was investigated under similar reaction conditions. The addition of Sn to Fe/AC catalyst seems to enhance phenol selectivity by 33% (Fig. 7). TOF and physical properties of iron loaded catalysts are shown in Table 1. [Pg.280]

The preparation of iron impregnated activated carbon as catalysts and the catalytic performance of these catalysts were studied in benzene hydroxylation with hydrogen peroxide as oxidant. 5.0Fe/AC catalyst containing 5.0 wt% iron on activated carbon yielded about 16% phenol. The addition of Sn on 5.0Fe/AC catalyst led to the enhancement of selectivity towards phenol. [Pg.280]

In this work, various Ru-BINAP catalysts immobilized on the phosphotungstic acid(PTA) modified alumina were prepared and the effects of the reaction variables (temperature, H2 pressure, solvent and content of triethylamine) on the catalytic performance of the prepared catalysts were investigated in the asymmetric hydrogenation of dimethyl itaconate (DMIT). [Pg.349]

Modified hotocatalysts were prepared using commercial and synthesized Ti02. The modification was carried out in two different methods, i.e. platinization with H2PtCl6 solution and metallization with leached solution from wasted catalytic converter. They were characterized by UV-DRS, BET, and XRD and tested their catalytic performance for decomposition and oxidation of TCE in liquid phase. [Pg.471]

Fig. 3. Catalytic performance of modified P-25 catalysts and prepared Ti02 catalysts for photocatalytic decomposition of TCE (O.lg/L)... Fig. 3. Catalytic performance of modified P-25 catalysts and prepared Ti02 catalysts for photocatalytic decomposition of TCE (O.lg/L)...
Fig. 4 shows the current density over the supported catalysts measured in 1 M methanol containing 0.5 M sulfuric acid. During forward sweep, the methanol electro-oxidation started to occur at 0.35 V for all catalysts, which is typical feature for monometallic Pt catalyst in methanol electro-oxidation [8]. The maximum current density was decreased in the order of Pt/CMK-1 > Pt/CMK-3 > Pt/Vulcan. It should be noted that the trend of maximum current density was identical to that of metal dispersion (Fig. 2 and Fig. 3). Therefore, it is concluded that the metal dispersion is a critical factor determining the catalytic performance in the methanol electro-oxidation. Fig. 4 shows the current density over the supported catalysts measured in 1 M methanol containing 0.5 M sulfuric acid. During forward sweep, the methanol electro-oxidation started to occur at 0.35 V for all catalysts, which is typical feature for monometallic Pt catalyst in methanol electro-oxidation [8]. The maximum current density was decreased in the order of Pt/CMK-1 > Pt/CMK-3 > Pt/Vulcan. It should be noted that the trend of maximum current density was identical to that of metal dispersion (Fig. 2 and Fig. 3). Therefore, it is concluded that the metal dispersion is a critical factor determining the catalytic performance in the methanol electro-oxidation.
Mesoporous carbon materials were prepared using ordered silica templates. The Pt catalysts supported on mesoporous carbons were prepared by an impregnation method for use in the methanol electro-oxidation. The Pt/MC catalysts retained highly dispersed Pt particles on the supports. In the methanol electro-oxidation, the Pt/MC catalysts exhibited better catalytic performance than the Pt/Vulcan catalyst. The enhanced catalytic performance of Pt/MC catalysts resulted from large active metal surface areas. The catalytic performance was in the following order Pt/CMK-1 > Pt/CMK-3 > Pt/Vulcan. It was also revealed that CMK-1 with 3-dimensional pore structure was more favorable for metal dispersion than CMK-3 with 2-dimensional pore arrangement. It is eoncluded that the metal dispersion was a critical factor determining the catalytic performance in the methanol electro-oxidation. [Pg.612]


See other pages where Catalytic performances is mentioned: [Pg.486]    [Pg.487]    [Pg.488]    [Pg.19]    [Pg.335]    [Pg.335]    [Pg.96]    [Pg.112]    [Pg.46]    [Pg.48]    [Pg.56]    [Pg.121]    [Pg.179]    [Pg.191]    [Pg.192]    [Pg.227]    [Pg.267]    [Pg.267]    [Pg.273]    [Pg.299]    [Pg.349]    [Pg.351]    [Pg.517]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 ]

See also in sourсe #XX -- [ Pg.65 , Pg.66 , Pg.67 , Pg.68 ]

See also in sourсe #XX -- [ Pg.2 , Pg.9 , Pg.33 , Pg.69 , Pg.81 , Pg.83 , Pg.84 , Pg.101 , Pg.115 , Pg.150 , Pg.220 , Pg.256 , Pg.259 , Pg.261 , Pg.264 ]

See also in sourсe #XX -- [ Pg.93 ]




SEARCH



© 2019 chempedia.info