Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts metal-zeolite catalyzed isomerization

The presence of metal may catalyze demethylation and can occur to some extent in catalysts where the metal function is under-passivated, as by incomplete sulfiding. This would convert valuable xylenes to toluene. The demethylation reaction is usually a small contributor to xylene loss. Metal also catalyzes aromatics saturation reactions. While this is a major and necessary function to facilitate EB isomerization, any aromatics saturation is undesirable for the process in which xylene isomerization and EB dealkylation are combined. Naphthenes can also be ring-opened and cracked, leading to light gas by-products. The zeolitic portion of the catalyst participates in the naphthene cracking reactions. Cracked by-products can be more prevalent over smaller pore zeolite catalysts. [Pg.494]

Different catalysts bring about different types of isomerization of hydrocarbons. Acids are the best known and most important catalysts bringing about isomerization through a carbocationic process. Brpnsted and Lewis acids, acidic solids, and superacids are used in different applications. Base-catalyzed isomerizations of hydrocarbons are less frequent, with mainly alkenes undergoing such transformations. Acetylenes and allenes are also interconverted in base-catalyzed reactions. Metals with dehydrogenating-hydrogenating activity usually supported on oxides are also used to bring about isomerizations. Zeolites with shape-selective characteristics... [Pg.160]

Medium pore aluminophosphate based molecular sieves with the -11, -31 and -41 crystal structures are active and selective catalysts for 1-hexene isomerization, hexane dehydrocyclization and Cg aromatic reactions. With olefin feeds, they promote isomerization with little loss to competing hydride transfer and cracking reactions. With Cg aromatics, they effectively catalyze xylene isomerization and ethylbenzene disproportionation at very low xylene loss. As acid components in bifunctional catalysts, they are selective for paraffin and cycloparaffin isomerization with low cracking activity. In these reactions the medium pore aluminophosphate based sieves are generally less active but significantly more selective than the medium pore zeolites. Similarity with medium pore zeolites is displayed by an outstanding resistance to coke induced deactivation and by a variety of shape selective actions in catalysis. The excellent selectivities observed with medium pore aluminophosphate based sieves is attributed to a unique combination of mild acidity and shape selectivity. Selectivity is also enhanced by the presence of transition metal framework constituents such as cobalt and manganese which may exert a chemical influence on reaction intermediates. [Pg.512]

The bifunctionality of metal-doped zeolite catalysts is explained here for the important example of isomerization and hydrogenation. The metal content facilitates the hydrogenation and dehydrogenation steps, while the acid-catalyzed isomerization step takes place under the restricted conditions of the zeolite cavities (Scheme 7-1). [Pg.253]

Isomerization of olefins or paraffins is an acid-catalyzed reaction that can be carried out with any number of strong acids, including mineral acids, sulfated metal oxides, zeolites and precious metal-modified catalysts [10]. Often the catalyst contains both an acid function and a metal function. The two most prevalent catalysts are Pt/chlorided AI2O3 and Pt-loaded zeolites. The power of zeoHtes in this reaction type is due to their shape selectivity [11] and decreased sensitivity to water or other oxygenates versus AICI3. It is possible to control the selectivity of the reaction to the desired product by using a zeoHte with the proper characteristics [12]. These reactions are covered in more detail in Chapter 14. [Pg.356]

When the hydrogenation function is embedded in the crystal voids of an MFI topology, the formation of trans-isomers is strongly reduced. After partial reduction of soy bean oil with such catalyst from an iodine value of 140 to 80, virtually no trans-isomers are obtained (56). This is the result of pore mouth catalysis combined with zeolite shape selectivity. Due to the bent character of the cts-isomer chains in triglycerides, trans-configured chains preferentially enter the pore mouths for hydrogenation. In this environment, metal-catalyzed cis-trans isomerization is restricted for steric reasons as multiple readsorption is minimal. [Pg.274]

On the other hand, it was proposed that acid catalyzed reactions such as skeletal isomerization of paraffin [2], hydrocracking of hydrocarbons [3] or methanol conversion to hydrocarbon [4] over metal supported acid catalysts were promoted by spillover hydrogen (proton) on the acid catalysts. Hydrogen spillover phenomenon from noble metal to other component at room temperature has been reported in many cases [5]. Recently Masai et al. [6] and Steinberg et al. [7] showed that the physical mixtures of protonated zeolite and R/AI2O3 showed high hydrocracking activities of paraffins and skeletal isomerization to some extent. [Pg.464]

The conversion of n-hexane over various Pt-zeolite catalysts responded strongly to changes in hydrogen pressures [13-15]. Increasing the hydrogen/n-hexane ratio promoted metal catalyzed skeletal isomerization, mainly by the C5-cyclic pathway and shifted also the fragment composition towards vmues typical of metal-catalyzed hydrogenolysis. [Pg.591]

Baba et al. prepared low-valent lanthanide species introduced into zeolite by impregnation from Y and Eu metals dissolved in liquid ammonia followed by evacuation at 773 K[46]. The resulting compounds catalyzed 1-butene isomerization by anionic mechanisms. TPD results with the catalysts suggest that metal imides such as EuNH act as basic sites. [Pg.48]

In this paper, pyridine adsorption was utilized to investigate the hydrogen spillover phenomenon from metal to acidic centers of zeolite by observing hydrogenation of chemisorbed pyridine on B or L acid sites of USY zeolite using hybrid catalyst composed of USY zeolite and Pt/SiOo. To give insight into spill-over process in the hybrid catalyst system, isomerization of n-pentane, which is one of the typical add catalyzed reaction, was also studied. [Pg.326]

Platinum (metal)- and acid (oxide)-catalyzed processes were developed to convert petroleum to high-octane fuels. Hydrodesulfurization catalysis removed sulfur from the crude to prevent catalyst deactivation. The discovery of microporous crystalline alumina silicates (zeolites) provided more selective and active catalysts for many reactions, including cracking, hydrocracking, alkylation, isomerization, and oligomerization. Catalysts that polymerize ethylene, propylene, and other molecules were discovered. A new generation of bimetallic catalysts that were dispersed on high-surface-area (100-400 m /g) oxides was synthesized. [Pg.445]

Modified Zeolites. As described above, alkali ion-exchanged zeolites are weak bases. Various efforts have been made to increase the base strength of alkali metal-ion exchanged zeolites. Metallic sodium particles in zeolites are formed by the decomposition of occluded sodium azide (59). These sodium particles are capable of performing base-catalyzed reactions. These catalysts catalyze the isomerization of butenes at 300 K and the side-chain alkylation of toluene with ethylene at 523 K. [Pg.401]

Zeolite MCM-22 in its Br0nsted-acid form has been described in the hterature as a useful catalyst for a variety of acid-catalyzed reactions, such as iso-alkane/olefin alkylation [e.g.40,41],skeletal and double-bond isomerization of olefins [42] and ethylbenzene synthesis via alkylation of benzene with ethylene [43], to name merely a few. Moreover, due to its very large intracrystalline cavities, zeolite MCM-22 has also been demonstrated to be a suitable host material for a variety of catalytically active guests, e.g. transition metal complexes which are useful in selective oxidation [44] or hydrogenation [45] reactions. Due to these interesting properties it seems worthwhile to focus on the synthesis features of MCM-22 (see below). [Pg.73]

Oxides of Cr, Mo, and W are usually used for catalysts as mixed oxides with other oxides such as alumina and silica which are prepared by coprecipitation, impregnation, etc. They are seldom put to practical use as simple oxides. Principal reactions catalyzed by these oxides, unlike those observed for silica-alumina or zeolites, often involve redox-type reaction steps, and during these steps reaction intermediates having covalent carbon-metal bonds are formed. Examples of those reactions are dehydrogeneration, hydrogenation and skeletal isomerization of hydrocarbons, and polymerization of olefms, as well as metathesis of olefins and hydrodesulfurization. Therefore, acid-base properties of catalysts usually play secondary roles in catalysts. [Pg.65]

The combination of metal and zeolite in one catalyst system offers attractive possibilities for isomerization reactions, for example in the reforming of naphta. The advantage is caused by the ease at which metals catalyze (de)hydrogenation reactions. Whereas carbenium ions on zeolites form readily by protonation of alkenes, the formation of carbonium ions from alkanes requires a high activation energy (see also Section 6.4.3) Because transition metals possess excellent activity for the dehydrogenation of alkanes (see also Section 3.1.2.3), the isomerization of... [Pg.99]

Numerous types of basic heterogeneous catalysts, such as alkahne earth metal oxide, anion exchange resins and alkali metal compounds supported on alumina or zeolite can catalyze various chemical reactions such as isomerization, aldol, Michael, and Knoevenagel condensation, oxidation and transesterification [1], Today considerable attention is devoted to the production of biodiesel (FAMEs) as an alternative for petroleum-derived diesel fuel. Biodiesel is synthesized by direct transesterification of vegetable oil or animal fat with a short-chain alcohol, viz. methanol, ethanol, and isopropanol in presence of an acid, base or enzymatic catalyst [2], Considering the advantages of solid base catalysts, for easy separation and recovery, reduced corrosion and environmental acceptance [1], many studies have been conducted on basic heterogeneous catalysts development for biodiesel production [3-13],... [Pg.775]


See other pages where Catalysts metal-zeolite catalyzed isomerization is mentioned: [Pg.71]    [Pg.523]    [Pg.130]    [Pg.485]    [Pg.1237]    [Pg.48]    [Pg.233]    [Pg.325]    [Pg.79]    [Pg.573]    [Pg.171]    [Pg.241]    [Pg.474]    [Pg.316]    [Pg.401]    [Pg.198]    [Pg.184]    [Pg.364]   


SEARCH



Catalysts zeolitic

Isomerization catalysts

Isomerization metal-zeolite catalyzed

Zeolite catalyst

Zeolites isomerization

Zeolites metals

© 2024 chempedia.info