Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts by precipitation

Palladium has been extensively used in organic syntheses and in homogeneous catalysis (ref. 1-3), but industrial applications have remained relatively rare so far (ref. 4). The main reason lies in the de-activation of the catalyst by precipitation of metallic palladium under catalytic conditions. Such a process is actually observed in the carbonylation reactions under CO pressure. [Pg.263]

We have oxidized active carbon to improve its properties as a support to prepare 5% Pd/C catalysts by precipitation or by incipient wetness impregnation. The oxidizing agent is nitric acid. Temperature of the slurry, contact time and nitric acid concentration enable to control the number and the type of acidic groups created on the support surface. [Pg.993]

With supported Mn(III)-salen complexes [27], the use of polymer-bound catalysts for the asymmetric epoxidation of olefins is possible, allowing once more the easy recovery of the catalyst by precipitation with a suitable solvent [28]. Poly(ethylene... [Pg.810]

In this paper a study is presented on the preparation of a series of supported catalysts by precipitation of metal cyanide complexes in the presence of suspended supports. As supports alumina, titania, and silica, have been used. The metals studied comprise iron, cobalt, nickel, copper, manganese, palladium, and molybdenum. Both monometallic, bimetallic and even trimetallic cyanides were precipitated. The stoichiometry of the precipitated complexes was controlled by the valency of the metal ions and by using both nitroprusside and cyanide complexes. Electron microscopy was used to evaluate the distribution of the deposited complex cyanides on the supports. 57Fe-M6ssbauer spectra were measured on the dried precipitated complexes to gain information on the chemical composition of the iron containing complexes. [Pg.932]

Schiith, F. and Unger, K. Preparation of catalysts by precipitation and coprecipitation and by precipitation from organic solvents. In Handbook of Heterogeneous Catalysis Ertl, G., Kndzinger, H., and Weitkamp, J., Eds., Wiley-VCH Heidelberg, 1997, p. 72. [Pg.410]

Figure 1.3. Typical production line for manufacture of catalysts by precipitation. Figure 1.3. Typical production line for manufacture of catalysts by precipitation.
Although Pd is cheaper than Rh and Pt, it is still expensive. In Pd(0)- or Pd(ll)-catalyzed reactions, particularly in commercial processes, repeated use of Pd catalysts is required. When the products are low-boiling, they can be separated from the catalyst by distillation. The Wacker process for the production of acetaldehyde is an example. For less volatile products, there are several approaches to the economical uses of Pd catalysts. As one method, an alkyldi-phenylphosphine 9, in which the alkyl group is a polyethylene chain, is prepared as shown. The Pd complex of this phosphine has low solubility in some organic solvents such as toluene at room temperature, and is soluble at higher temperature[28]. Pd(0)-catalyzed reactions such as an allylation reaction of nucleophiles using this complex as a catalyst proceed smoothly at higher temperatures. After the reaction, the Pd complex precipitates and is recovered when the reaction mixture is cooled. [Pg.5]

In this sequence the Cl also acts as a catalyst and two molecules are destroyed. It is estimated that before the Cl is finally removed from the atmosphere in 1—2 yr by precipitation, each Cl atom will have destroyed approximately 100,000 molecules (60). The estimated O -depletion potential of some common CFCs, hydrofluorocarbons, HFCs, and hydrochlorofluorocarbons, HCFCs, are presented in Table 10. The O -depletion potential is defined as the ratio of the emission rate of a compound required to produce a steady-state depletion of 1% to the amount of CFC-11 required to produce the 1% depletion. The halons, bromochlorofluorocarbons or bromofluorocarbons that are widely used in fire extinguishers, are also ozone-depleting compounds. Although halon emissions, and thus the atmospheric concentrations, are much lower than the most common CFCs, halons are of concern because they are from three to ten times more destmctive to O, than the CFCs. [Pg.380]

Other than fuel, the largest volume appHcation for hexane is in extraction of oil from seeds, eg, soybeans, cottonseed, safflower seed, peanuts, rapeseed, etc. Hexane has been found ideal for these appHcations because of its high solvency for oil, low boiling point, and low cost. Its narrow boiling range minimises losses, and its low benzene content minimises toxicity. These same properties also make hexane a desirable solvent and reaction medium in the manufacture of polyolefins, synthetic mbbers, and some pharmaceuticals. The solvent serves as catalyst carrier and, in some systems, assists in molecular weight regulation by precipitation of the polymer as it reaches a certain molecular size. However, most solution polymerization processes are fairly old it is likely that those processes will be replaced by more efficient nonsolvent processes in time. [Pg.406]

Hydrolysis of Peroxycarboxylic Systems. Peroxyacetic acid [79-21-0] is produced commercially by the controlled autoxidation of acetaldehyde (qv). Under hydrolytic conditions, it forms an equiHbrium mixture with acetic acid and hydrogen peroxide. The hydrogen peroxide can be recovered from the mixture by extractive distillation (89) or by precipitating as the calcium salt followed by carbonating with carbon dioxide. These methods are not practiced on a commercial scale. Alternatively, the peroxycarboxyHc acid and alcohols can be treated with an estetifying catalyst to form H2O2 and the corresponding ester (90,91) (see Peroxides and peroxy compounds). [Pg.477]

Nickel sulfide, NiS, can be prepared by the fusion of nickel powder with molten sulfur or by precipitation usiag hydrogen sulfide treatment of a buffered solution of a nickel(II) salt. The behavior of nickel sulfides ia the pure state and ia mixtures with other sulfides is of iaterest ia the recovery of nickel from ores, ia the high temperature sulfide corrosion of nickel alloys, and ia the behavior of nickel-containing catalysts. [Pg.11]

Molecular Weight. Measurement of intrinsic viscosity in water is the most commonly used method to determine the molecular weight of poly(ethylene oxide) resins. However, there are several problems associated with these measurements (86,87). The dissolved polymer is susceptible to oxidative and shear degradation, which is accelerated by filtration or dialysis. If the solution is purified by centrifiigation, precipitation of the highest molecular weight polymers can occur and the presence of residual catalyst by-products, which remain as dispersed, insoluble soHds, further compHcates purification. [Pg.343]

Process water streams from vinyl chloride manufacture are typically steam-stripped to remove volatile organics, neutralized, and then treated in an activated sludge system to remove any nonvolatile organics. If fluidized-bed oxychlorination is used, the process wastewater may also contain suspended catalyst fines and dissolved metals. The former can easily be removed by sedimentation, and the latter by precipitation. Depending on the specific catalyst formulation and outfall limitations, tertiary treatment may be needed to reduce dissolved metals to acceptable levels. [Pg.419]

Supports are often prepared first and the catalyst and promoter components added later (60). Metal oxide supports are usually prepared by precipitation from aqueous solutions. Nitrates are commonly used anions alkaUes and ammonium are commonly used cations. Metal oxide supports, eg, sihca and alumina, are prepared in the form of hydrogels. Mixed oxides such as siUca—alumina are made by cogelation. Carefiil control of conditions such as pH is important to give uniform products. [Pg.174]

This procedure is particularly time-saving when scrap platinum or spent catalyst is used for the preparation of platinum oxide, for after conversion to chloroplatinic acid a purification is conveniently effected by precipitating the ammonium salt, and the direct fusion of this with sodium nitrate eliminates the tedious process of reconversion to chloroplatinic acid. Furthermore ammonium chloroplatinate is not hygroscopic and can he accurately weighed. The amount of catalyst obtained is almost exactly half the weight of the ammonium salt employed. [Pg.98]

After separation of the catalyst the product was concentrated until dry, the residue was triturated with acetone, the resulting crystallizate was removed by suction and washed with acetone. The yield of N,N -bis-(2-(3, 4 -dihydroxyphenyl)-2-hydroxyethyl]-hexamethylene-diamine-dichlorohydrate was 3.3 grams, i.e., 92% of the theoretical value. A quantity of 2.8 grams having a melting point of 197,5° to 198°C was obtained by precipitation from a mixture of methanol-ether. [Pg.767]

Chitosan (Fig. 27) was deposited on sihca by precipitation. The palladium complex was shown to promote the enantioselective hydrogenation of ketones [80] with the results being highly dependent on the structure of the substrate. In the case of aromatic ketones, both yield and enantioselectiv-ity depend on the N/Pd molar ratio. Low palladium contents favored enan-tioselectivity but reduced the yield. Very high conversions were obtained with aliphatic ketones, although with modest enantioselectivities. More recently, the immobilized chitosan-Co complex was described as a catalyst for the enantioselective hydration of 1-octene [81]. Under optimal conditions, namely Co content 0.5 mmolg and 1-octene/Co molar ratio of 50, a 98% yield and 98% ee were obtained and the catalyst was reused five times without loss of activity or enantioselectivity. [Pg.187]

Besides supported (transition) metal catalysts, structure sensitivity can also be observed with bare (oxidic) support materials, too. In 2003, Hinrichsen et al. [39] investigated methanol synthesis at 30 bar and 300 °C over differently prepared zinc oxides, namely by precipitation, coprecipitation with alumina, and thermolysis of zinc siloxide precursor. Particle sizes, as determined by N2 physisorpt-ion and XRD, varied from 261 nm for a commercial material to 7.0 nm for the thermolytically obtained material. Plotting the areal rates against BET surface areas (Figure 3) reveals enhanced activity for the low surface area zinc... [Pg.169]

The enantioselectivity of this catalyst, which is prepared as the iodide salt, is somewhat dependent on the anion that is present. If AgSbF6 is used as a cocatalyst, the iodide is removed by precipitation and the e.e. increases from 81 to 91%. These results indicate that the absence of a coordinating anion improved enantioselectivity. Entry 2 shows the extensively investigated f-BuBOX ligand with an A-acryloylthiazolidinone dienophile. With Cu2+ as the metal, the coordination geometry is square planar. The complex exposes the re face of the dienophile. [Pg.514]


See other pages where Catalysts by precipitation is mentioned: [Pg.473]    [Pg.998]    [Pg.282]    [Pg.73]    [Pg.722]    [Pg.259]    [Pg.231]    [Pg.115]    [Pg.473]    [Pg.998]    [Pg.282]    [Pg.73]    [Pg.722]    [Pg.259]    [Pg.231]    [Pg.115]    [Pg.734]    [Pg.514]    [Pg.13]    [Pg.291]    [Pg.380]    [Pg.558]    [Pg.497]    [Pg.84]    [Pg.441]    [Pg.474]    [Pg.663]    [Pg.225]    [Pg.225]    [Pg.321]    [Pg.149]    [Pg.58]    [Pg.352]    [Pg.366]    [Pg.428]    [Pg.622]    [Pg.158]    [Pg.400]    [Pg.486]    [Pg.215]   
See also in sourсe #XX -- [ Pg.97 ]




SEARCH



Binary oxide catalysts synthesized by sequential precipitation Brooks

Catalyst Recycling by Precipitation

Catalysts precipitation

© 2024 chempedia.info