Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst type, effect

Primary Variables. The most obvious variables are those whose effects on performance are to be evaluated directiy these ate the variables that, most likely, created the need for the investigation in the first place. Such variables may be quantitative, such as catalyst concentration, temperature, or pressure, or they may be quaUtative, such as method of preparation, catalyst type, or batch of material. [Pg.519]

Quahtative variables can be broken down into two categories. The first consists of those variables whose specific effects ate to be compared directiy eg, comparison of the effect on performance of two proposed preparation methods or of three catalyst types. The requited number of conditions for such variables is generally evident. Such variables are sometimes referred to as fixed effects or Type I variables. [Pg.519]

Yamamoto et al. were probably the first to report that chiral aluminum(III) catalysts are effective in the cycloaddition reactions of aldehydes [11]. The use of chiral BINOL-AlMe complexes (R)-S was found to be highly effective in the cycloaddition reaction of a variety of aldehydes with activated Danishefsky-type dienes. The reaction of benzaldehyde la with Danishefsky s diene 2a and traws-l-methoxy-2-methyl-3-(trimethylsilyloxy)-l,3-pentadiene 2b affords cis dihydropyrones, cis-3, as the major product in high yield with up to 97% ee (Scheme 4.6). The choice of the bulky triarylsilyl moiety in catalyst (J )-8b is crucial for high yield and the en-antioselectivity of the reaction in contrast with this the catalysts derived from AlMe3 and (J )-3,3 -disubstituted binaphthol (substituent = H, Me, Ph) were effective in stoichiometric amounts only and were less satisfactory with regard to reactivity and enantioselectivity. [Pg.156]

There is a redundancy of flexibility in the design of FCC catalysts. Variation in the amount and type of zeolite, as well as the type of active matrix, provide a great deal of catalyst options that the refiner can employ to fit its needs. For smaller refiners, it may not be practical to employ pilot plant facilities to evaluate different catalysts. In this case, the above methodology can still be used with emphasis shifted toward using the MAT data to compare the candidate catalysts. It is important that MAT data are properly corrected for temperatu. soaking time, and catalyst strippability effects. [Pg.117]

Fig. 1. Effect of catalyst types on the performance of fuel cell at 25 °C (9M HCOOH, Air). Fig. 1. Effect of catalyst types on the performance of fuel cell at 25 °C (9M HCOOH, Air).
This and similar catalysts are effective with silyl ketene acetals and silyl thioketene acetals.155 One of the examples is the tridentate pyridine-BOX-type catalyst 18. The reactivity of this catalyst has been explored using a- and (3-oxy substituted aldehydes.154 a-Benzyloxyacetaldehyde was highly enantioselective and the a-trimethylsilyoxy derivative was weakly so (56% e.e.). Nonchelating aldehydes such as benzaldehyde and 3-phenylpropanal gave racemic product. 3-Benzyloxypropanal also gave racemic product, indicating that the (i-oxy aldehydes do not chelate with this catalyst. [Pg.128]

S. Y Wang, and J. P. Chen et al., Selective Debenzylation in the Presence of Aromatic Chlorine on Pd/C Catalysts Effects of Catalyst Types and Reaction Kinetics , paper presented at 20th Organic Reactions Catalysis Society Meeting, March 21-25, 2004, Hilton Head Island, SC, USA. [Pg.122]

Selective Debenzylation in the Presence of Aromatic Chlorine on Pd/C Catalysts Effects of Catalyst Types and Reaction Kinetics... [Pg.499]

There are several ways we can expand a design such as this we can increase the number of factors, the number of levels of each factor, or we can do both, of course. There are other differences than can be superimposed over the basic idea of the simple, all-possible combinations of factors, such as to consider the effect of whether we can control the levels of the factors (if we can then do things that are not possible to do if we cannot control the levels of the factors), whether the levels correspond to physical characteristics that can be evaluated and the values described have real physical meaning (temperature, for example, has real physical meaning, while catalyst type does not, even though different catalysts in an experiment may all have different degrees of effectiveness, and reproducibly so). [Pg.89]

Wan et al. [61] also reported the highly effective conversion of methane to aromatic hydrocarbons over Cu, Ni, Fe, and Al catalysts. The effects of the type of catalyst, its configuration, and the microwave irradiation conditions on reaction path and product selectivity were examined under both batch and continuous-flow conditions. [Pg.359]

Rhodium(n) carboxamidates are clearly superior to all other types of catalysts in effecting highly chemo-, regio-, diastereo-, and enantioselective intramolecular C-H activation reactions of carbenoids derived from diazoacetates. Specifically, Rh2(4Y-MPPIM)4 is the catalyst of choice for C-H activation reactions of simple primary and secondary alkyl diazoacetates. Likewise, Rh2(4Y-MACIM)4 thus far has been the most successful catalyst with tertiary alkyl diazoacetates, whereas for primary acceptor-substituted diazoacetates with a pendant olefin side chain, Rh2(4A-MEOX)4 has proved to be highly selective. [Pg.191]

Only a few detailed studies of the reaction mechanism of the homogeneous hydrogenation of imines have been published until now. A generalization seems to be very difficult for two reasons. First, rather different catalyst types are effective and probably act by different mechanisms. Second, the effect of certain additives (especially iodide or iodine and acid/base) is often decisive for ee and rate, but a promoter in one case can be a deactivator in another case. [Pg.1207]

The foregoing review of the alkylation mechanism and the influence of the catalyst type and reaction conditions show that, in essence, the chemistry is identical with all the examined acid catalysts, liquid and solid. Differences in the importance of individual reaction steps originate from the variety of possible structures and distributions of acid sites of solid catalysts. Changing process parameters induces similar effects with each of the catalysts however, the sensitivity to a particular parameter depends strongly on the catalyst. All the acids deactivate by the formation of unsaturated polymers, which are strongly bound to the acid. [Pg.311]

Enamine nucleophiles react readily with soft conjugated electrophiles, such as a, 3-unsaturated carbonyl, nitro, and sulfonyl compounds [20-22], Both aldehydes and ketones can be used as donors (Schemes 27 and 28). These Michael-type reactions are highly useful for the construction of carbon skeletons and often the yields are very high. The problem, however, is the enantioselectivity of the process. Unlike the aldol and Mannich reactions, where even simple proline catalyst can effectively direct the addition to the C = O or C = N bond by its carboxylic acid moiety, in conjugate additions the charge develops further away from the catalyst (Scheme 26) ... [Pg.54]

The first example involving a rhodium catalyst in an ene reaction was reported by Schmitz in 1976. An intramolecular cyclization of a diene occurred to give a pyrrole when exposed to rhodium trichloride in isobutanol (Eq. 2) [15]. Subsequently to this work, Grigg utilized Wilkinson s catalyst to effect a similar cycloisomerization reaction (Eq. 3) [16]. Opplozer and Eurstner showed that a n -allyl-rhodium species could be formed from an allyl carbonate or acetate and intercepted intramolecularly by an alkene to afford 1,4-dienes (Eq. 4). Hydridotetrakis(triphenylphosphine)rhodium(l) proved to be the most efficient catalyst for this particular transformation. A direct comparison was made between this catalyst and palladium bis(dibenzylidene) acetone, in which it was determined that rhodium might offer an additional stereochemical perspective. In the latter case, this type of reaction is typically referred to as a metallo-ene reaction [17]. [Pg.152]

Silica from zeolite migrates less readily. In the magnesia-alumina system, spinel, as identified by X-ray diffraction, is inactive for SO2 removal. The effect of temperature on steam stability, oxidative adsorption and reductive desorption of SO2 are described. Five commercial catalyst types are ranked for SOx removal. [Pg.114]

A favorable combination of valence forces of both components seems to be the basic principle of the nickel-molybdenum ammonia catalyst. It has been found (50) that an effective catalyst of this type requires the presence of two solid phases consisting of molybdenum and nickel on the one hand and an excess of metallic molybdenum on the other. Similar conditions prevail for molybdenum-cobalt and for molybdenum-iron catalysts their effectiveness depends on an excess of free metal, molybdenum for the molybdenum-cobalt combination and iron for the molybdenum-iron combination, beyond the amounts of the two components which combine with each other. A simple explanation for the working mechanism of such catalysts is that at the boundary lines between the two phases, an activation takes place. In the case of the nickel-molybdenum catalyst, the nickel-molybdenum phase will probably act preferentially on the hydrogen and the molybdenum phase on the nitrogen. [Pg.101]

The small-molecule catalysts are covered in Chapters 5 and 6. In Chapter 5, Joshua Payette and Hisashi Yamamoto discuss the importance of polar Bronsted-acid-type catalysts as well as cooperative effects in hydrogen bonding catalysis. Chapter 6 by Mike Kotke and Peter Schreiner is then devoted to the single most popular small-molecule catalyst types, the thiourea catalysts. Chapter 6, the longest of all chapters, also provides an excellent overview of the history and development of the field of small-molecule hydrogen bond catalysis. [Pg.394]

Table VII. Effect of Catalyst Types in Fluid Catalytic Cracking of Gas Oils ... Table VII. Effect of Catalyst Types in Fluid Catalytic Cracking of Gas Oils ...
Continuous analysis of highly fluorinated materials can present problems, primarily caused by the corrosiveness of hydrogen fluoride which is liberated from all of them during combustion. Hydrogen fluoride will react with the permanently bound hydroxy groups on the surface of the cooler parts of combustion tube walls and catalysts. The effect can lead to erratic hydrogen values and so the installation of some type of oxide [magnesium oxide, alumina, or cerium (IV) oxide] trap in the combustion tube to prevent its escape is recommended. 11... [Pg.27]

Friedel-Crafts catalysts and hydrogen halides, protic acids, silica-alumina-type catalysts, or other protic catalysts are effective. [Pg.725]

Role of Individual Functions of Bifunctional Reforming Catalysts Effect of Catalyst Type and Hydrocarbon Structure on Product (M2)°... [Pg.46]

Catalyst type. Pt catalysts on various supports are suitable. Rh catalysts give moderate ee, Pd, Ru and Ni are not effective [30],... [Pg.82]


See other pages where Catalyst type, effect is mentioned: [Pg.195]    [Pg.376]    [Pg.460]    [Pg.926]    [Pg.433]    [Pg.19]    [Pg.191]    [Pg.313]    [Pg.590]    [Pg.453]    [Pg.272]    [Pg.35]    [Pg.51]    [Pg.475]    [Pg.793]    [Pg.564]    [Pg.353]    [Pg.163]    [Pg.228]    [Pg.722]    [Pg.243]    [Pg.204]    [Pg.244]    [Pg.723]    [Pg.180]    [Pg.583]   
See also in sourсe #XX -- [ Pg.241 , Pg.242 , Pg.244 ]




SEARCH



Catalyst types

Catalysts catalyst types

Effect of Feedstock Type and Reaction Temperature on Catalyst Deactivation

© 2024 chempedia.info