Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron molybdenum catalyst

Table 1.27 summarizes (he average eccmomic data concerning formaldehyde manufacturing processes using silver and iron molybdenum catalysts. They refer to the late technologies and a capacity of 67,500 t/year of 37 per cent weight formalin. [Pg.102]

Oxidation of methanol to formaldehyde with vanadium pentoxide catalyst was first patented in 1921 (90), followed in 1933 by a patent for an iron oxide—molybdenum oxide catalyst (91), which is stiU the choice in the 1990s. Catalysts are improved by modification with small amounts of other metal oxides (92), support on inert carriers (93), and methods of preparation (94,95) and activation (96). In 1952, the first commercial plant using an iron—molybdenum oxide catalyst was put into operation (97). It is estimated that 70% of the new formaldehyde installed capacity is the metal oxide process (98). [Pg.494]

The oxidative dehydration of isobutyric acid [79-31-2] to methacrylic acid is most often carried out over iron—phosphoms or molybdenum—phosphoms based catalysts similar to those used in the oxidation of methacrolein to methacrylic acid. Conversions in excess of 95% and selectivity to methacrylic acid of 75—85% have been attained, resulting in single-pass yields of nearly 80%. The use of cesium-, copper-, and vanadium-doped catalysts are reported to be beneficial (96), as is the use of cesium in conjunction with quinoline (97). Generally the iron—phosphoms catalysts require temperatures in the vicinity of 400°C, in contrast to the molybdenum-based catalysts that exhibit comparable reactivity at 300°C (98). [Pg.252]

Catalysts. The methanation of CO and C02 is catalyzed by metals of Group VIII, by molybdenum (Group VI), and by silver (Group I). These catalysts were identified by Fischer, Tropsch, and Dilthey (18) who studied the methanation properties of various metals at temperatures up to 800°C. They found that methanation activity varied with the metal as follows ruthenium > iridium > rhodium > nickel > cobalt > osmium > platinum > iron > molybdenum > palladium > silver. [Pg.23]

Adkins-Peterson The oxidation of methanol to formaldehyde, using air and a mixed molybdenum/iron oxide catalyst. Not an engineered process, but the reaction which formed the basis of the Formox process. [Pg.13]

Mossbauer spectroscopy is one of the techniques that is relatively little used in catalysis. Nevertheless, it has yielded very useful information on a number of important catalysts, such as the iron catalyst for Fischer-Tropsch and ammonia synthesis, and the cobalt-molybdenum catalyst for hydrodesulfurization reactions. The technique is limited to those elements that exhibit the Mossbauer effect. Iron, tin, iridium, ruthenium, antimony, platinum and gold are the ones relevant for catalysis. Through the Mossbauer effect in iron, one can also obtain information on the state of cobalt. Mossbauer spectroscopy provides valuable information on oxidation states, magnetic fields, lattice symmetry and lattice vibrations. Several books on Mossbauer spectroscopy [1-3] and reviews on the application of the technique on catalysts [4—8] are available. [Pg.128]

A favorable combination of valence forces of both components seems to be the basic principle of the nickel-molybdenum ammonia catalyst. It has been found (50) that an effective catalyst of this type requires the presence of two solid phases consisting of molybdenum and nickel on the one hand and an excess of metallic molybdenum on the other. Similar conditions prevail for molybdenum-cobalt and for molybdenum-iron catalysts their effectiveness depends on an excess of free metal, molybdenum for the molybdenum-cobalt combination and iron for the molybdenum-iron combination, beyond the amounts of the two components which combine with each other. A simple explanation for the working mechanism of such catalysts is that at the boundary lines between the two phases, an activation takes place. In the case of the nickel-molybdenum catalyst, the nickel-molybdenum phase will probably act preferentially on the hydrogen and the molybdenum phase on the nitrogen. [Pg.101]

The iron molybdenum oxide catalyst was structurally characterized by XRD and vibrational spectroscopy (IR and Raman). [Pg.193]

It is well known, even from old literature data (ref. 1) that the presence of metal promotors like molybdenum and chromium in Raney-nickel catalysts increases their activity in hydrogenation reactions. Recently Court et al (ref. 2) reported that Mo, Or and Fe-promoted Raney-nickel catalysts are more active for glucose hydrogenation than unpromoted catalysts. However the effects of metal promotors on the catalytic activity after repeated recycling of the catalyst have not been studied so far. Indeed, catalysts used in industrial operation are recycled many times, stability is then an essential criterion for their selection. From a more fundamental standpoint, the various causes of Raney-nickel deactivation have not been established. This work was intended to address two essential questions pertinent to the stability of Raney-nickel in glucose hydrogenation namely what are the respective activity losses experienced by unpromoted or by molybdenum, chromium and iron-promoted catalysts after recycling and what are the causes for their deactivation ... [Pg.231]

Equation (305) describes the ammonia synthesis rate not only on iron catalysts, but also over molybdenum catalyst (105), tungsten (106), cobalt (95), nickel (96), and other metals (107). Equation (300) describes ammonia decomposition on various metals (provided that there is enough H2 in the gas phase). [Pg.253]

The next two entries to Table 3 are cited for completeness. Nitrogenase is treated in Chapter 7 and CO dehydrogenase in Chapter 9. Nitrogenase contains a very complex iron-sulfur cluster that includes another metal, molybdenum or vanadium. The crystal structure of the Mo variant has been determined. There is a third variant, alternative nitrogenase [92], whose cluster apparently does not contain any heterometal. That cluster would thus be a perfect candidate for our definition of a redox-catalytic iron-sulfur cluster. Unfortunately, this third nitrogenase has thus far been characterized to a much lesser extent than the other two forms. For all nitrogenases holds that the binding of N2 to the cluster has not been established [53] therefore, formally these enzymes have not yet been positively identified as redox iron-sulfur catalysts. [Pg.221]

Application To produce aqueous formaldehyde (AF) or urea formaldehyde precondensate (UFC) from methanol using Haldor Tbpspe A/S FK-Series iron/molybdenum-oxide catalysts. Description The process is carried out in a recirculation loop at low pressure (0 to 6 psig) (1 to 1.5 bar abs). Vaporized methanol is mixed with air and recycle gas that were boosted by the blower (1). The mixture may be preheated to about 480°F (250°C) in the optional heat exchanger (2) or it may be sent directly to the reactor (3). In the reactor, methanol and oxygen react in the catalyst-filled tubes to make formaldehyde. Reaction heat is removed by an oil heat transfer medium (HTM). The reacted gas exits the reactor at approximately 540°F (290°C) and is cooled in the LP steam boiler (4) to 260°F (130°C) before entering the absorber (5). In the absorber, the formaldehyde is absorbed in water or urea solution. Heat is removed by one or two cooling circuits (6, 7). From the lower circuit (6)... [Pg.63]

F. Barriere, M. C. Durrant, and C. J. Pickett, Chemical Models, Theoretical Calculations, and the Reactivity of the Isolated Iron-Molybdenum Cofactor, in Catalysts for Nitrogen Fixation, Nitrogenases, Relevant Chemical Models and Commercial Processes , Nitrogen Fixation Origins, Applications, and Research Progress eds. B. E. Smith, R. L. Richards, and W. E. Newton, Kluwer Academic Publishers, The Netherlands, 2004, Vol. l,Chap.7,p. 161. [Pg.3103]


See other pages where Iron molybdenum catalyst is mentioned: [Pg.4]    [Pg.552]    [Pg.552]    [Pg.4]    [Pg.552]    [Pg.552]    [Pg.271]    [Pg.80]    [Pg.259]    [Pg.120]    [Pg.39]    [Pg.274]    [Pg.278]    [Pg.281]    [Pg.190]    [Pg.190]    [Pg.110]    [Pg.180]    [Pg.107]    [Pg.225]    [Pg.231]    [Pg.236]    [Pg.152]    [Pg.298]    [Pg.202]    [Pg.28]    [Pg.118]    [Pg.240]    [Pg.269]    [Pg.271]    [Pg.64]    [Pg.112]    [Pg.97]    [Pg.102]   
See also in sourсe #XX -- [ Pg.93 , Pg.101 ]




SEARCH



Iron, catalyst

Iron-molybdenum oxide catalyst

Iron-molybdenum oxide catalyst mechanism

Iron-molybdenum oxide catalyst studies

Molybdenum catalysts

© 2024 chempedia.info